Exponential Bounds on Graph Enumerations from Vertex Incremental Characterizations

Jessica Shi, Jérémie Lumbroso Princeton University, Computer Science Department

January 9, 2018

Graphs

- G(V, E): set of vertices V connected by edges E
- Simple: undirected, unlabeled, no self-loops, no multiple edges
- Equivalent graphs determined by isomorphism

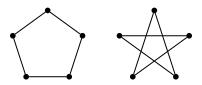


Figure: Isomorphic graphs.

Motivation and Prior Work

- Graph enumeration is a classical problem
- Tree decomposition is a typical approach for exact enumeration
- Focus on distance-hereditary graphs:
 - 1982: Introduction by Cunningham¹
 - . . .: Papers regarding distance-hereditary trees
 - 2009: Approximation of exp growth factor by Nakano et al.²
 - 2017: Exact enumeration by Chauve et al.³

¹ Cunningham. 1982.

² Nakano, Uehara, and Uno. 2009.

³ Chauve, Fusy, and Lumbroso. 2017.

Limitations of Chauve et al.

- Internal nodes of a split decomposition tree are:
 - star nodesclique nodestotally decomposable
 - prime nodes } not decomposable
- Distance-hereditary graphs are totally decomposable
- Other classes may have prime nodes that are difficult to characterize

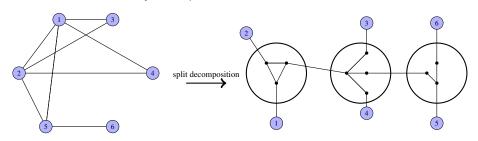


Figure: Graph-labeled tree from split decomposition.

Overview of Nakano et al.

- Steps:
 - Constructive view of distance-hereditary graphs (vertex incremental)
 - Expressed this view as DH-trees
 - Upper bounded the number of trees with compact encoding
- Observation 1: Other graphs can be described using vertex incremental operations
- Observation 2: Analytic combinatorics has more precise tools than compact encoding for bounding trees

Main Idea

- Goal: Combine simplest of both previous results to derive semi-automatic results
- Idea: Sacrifice exactness for an easier methodology
- Demonstrate the following as a general methodology:
 - Define vertex incremental trees constructively (focus on surjection)
 - Enumerate using analytic combinatorics
- Proof of concept on two case studies for which we know exact enumerations

Analytic Combinatorics (intuition)

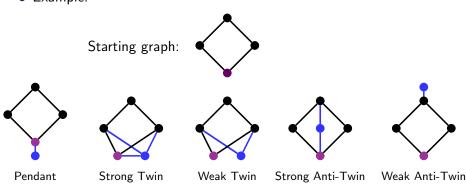
- Describe trees using symbolic rules (grammar)
 - Possible recursive description
 - Translates to generating function, which gives enumeration
- Rules:

Name	Symbol	Generating Function
Neutral (element of size 0)	ε	1
Atom (element of size 1)	Ζ	Z
Disjoint Union	A + B	A(z) + B(z)
Product	$A \times B$	$A(z) \cdot B(z)$
Sequence	Seq(A)	1/(1-A(z))
Set	Set(A)	$\exp(A(z))$

Vertex Incremental Constructions

Vertex Incremental (overview)

- **Vertex incremental**: necessary and sufficient conditions under which adding a vertex *x* to a graph of a certain class will produce another graph of that class
- Example:



Vertex Incremental (descriptions of graph classes)

Graph Classes	Pendant	Strong twin	Weak twin	Strong anti-twin	Weak anti-twin	Bipartite
3-leaf ⁴	1	2				
Cograph ⁵ Distance-		X	X			
hereditary ⁶	X	X	X			
Switch cograph ⁷ (6, 2)-chordal		X	X	Χ	Χ	
bipartite ⁸	Χ		X			
Parity ⁷		Χ	Χ			X

⁴ Gioan and Paul. 2012.

⁵ Nakano, Uehara, and Uno. 2009.

⁶ Bandelt and Mulder. 1986.

⁷ Montgolfier and Rao. 2005.

⁸ Cicerone and Di Stefano. 1999.

Vertex Incremental Trees

- Vertex incremental trees: Rooted, ordered tree, where internal nodes are labeled with VI ops and leaves are unlabeled
 - Corresponding graph: leaf nodes in bijection with vertices, and internal nodes represent operations used

Vertex Incremental Trees (construction)

Start

1

Add 2 as a pendant of 1

Add 3 as a strong twin of 2

Vertex Incremental Trees (side note)

Add 2 as a pendant of 1

Add 3 as a pendant of 1

This is equivalently given as:

Case 1: Distance-Hereditary Graphs

Distance-Hereditary Graphs

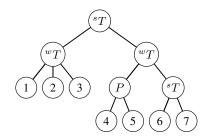
- Distance-hereditary graph: graph in which every induced path is the shortest path
- Operations:9

• *T: strong twin

• WT: weak twin

• P: pendant

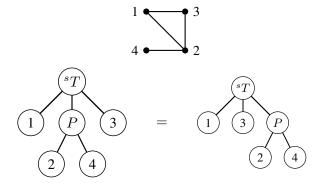




⁹ Bandelt and Mulder. 1986.

Normalizing Vertex Incremental Trees

- Multiple vertex incremental trees may correspond to the same graph:
 - Add 2, 3 as strong twins of 1, or
 Add 3, 2 as strong twins of 1
 - Add 4 as a pendant of 2



Normalization Rules

- DH-1. Commutativity of twins. The children of a node labeled wT or sT are unordered.
- DH-2. Commutativity of pendants. The non-leftmost children of a node labeled P are unordered.
- DH-3. **Connectivity**. The root is not labeled wT .
- DH-4. Associativity of twins. No child of a node labeled wT can be labeled wT , and no child of a node labeled sT can be labeled sT .
- DH-5. Any non-leftmost child of a node labeled P cannot labeled wT .
- DH-6. If the root has 2 children, it is labeled ${}^{s}T$.
- DH-7. If the root has 2 children, the labels of the children are either both wT or both P.
- DH-8. Associativity of pendants. The leftmost child of a node labeled *P* cannot be labeled *P*.

Results: Upper Bound Grammar

$$\mathcal{DH}_{T} = \mathcal{PR} + \mathcal{SR} + \mathcal{Z}$$

$$\mathcal{PR} = (\mathcal{S} + \mathcal{W} + \mathcal{Z}) \times \operatorname{SET}_{\geq 2} (\mathcal{P} + \mathcal{S} + \mathcal{Z})$$

$$\mathcal{SR} = \operatorname{SET}_{\geq 3} (\mathcal{P} + \mathcal{W} + \mathcal{Z}) + \operatorname{SET}_{=2} (\mathcal{W}) + \operatorname{SET}_{=2} (\mathcal{P})$$

$$+ \operatorname{SET}_{=2} (\mathcal{Z})$$

$$\mathcal{P} = (\mathcal{S} + \mathcal{W} + \mathcal{Z}) \times \operatorname{SET}_{\geq 1} (\mathcal{P} + \mathcal{S} + \mathcal{Z})$$

$$\mathcal{S} = \operatorname{SET}_{\geq 2} (\mathcal{P} + \mathcal{W} + \mathcal{Z})$$

$$\mathcal{W} = \operatorname{SET}_{\geq 2} (\mathcal{P} + \mathcal{S} + \mathcal{Z})$$

$$\mathcal{DH}_T = z + z^2 + 2z^3 + 10z^4 + 48z^5 + 270z^6 + \dots$$

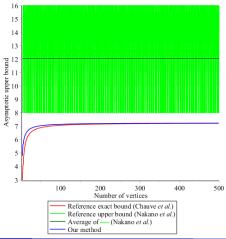
Note: Compared to the actual enumeration, the first few values of this enumeration are indeed an upper bound.

Results: Comparisons

• Our bound: $O(7.250^n)$

• Reference exact bound: $O(7.213^n)$

• Reference upper bound: $O(12.042^n)$



Case 2: Switch Cographs

Switch Cographs and Bicolored Cographs

- Switch cographs: graph in which none of its induced subgraphs are C_5 , bull, gem, or co-gem graphs
- Cographs: graph in which none of its induced subgraphs are P_4
 - Bicolored cographs: cograph in which its vertices are colored black or white

Theorem

Let $b = \#\{bicolored\ cographs\ on\ n-1\ vertices\}$ and let $s = \#\{switch\ cographs\ on\ n\ vertices\}$. Then,

$$b \le s \le n \cdot b$$

Note: This theorem is derived from previous results by Montgolfier and Rao. Its proof is based on an operation known as the Seidel switch.

Bicolored Cographs

Exact grammar:

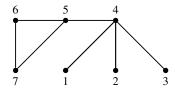
$$egin{aligned} \mathcal{BC} &= \mathcal{S} + \mathcal{W} + \mathcal{Z} \ \mathcal{S} &= \operatorname{Set}_{\geq 2} \left(\mathcal{W} + \mathcal{Z}
ight) \ \mathcal{W} &= \operatorname{Set}_{\geq 2} \left(\mathcal{S} + \mathcal{Z}
ight) \ \mathcal{Z} &= \mathcal{Z}_{\mathsf{white}} + \mathcal{Z}_{\mathsf{black}} \end{aligned}$$

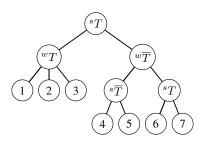
$$\mathcal{BC} = 2z + 6z^2 + 20z^3 + 80z^4 + 340z^5 + 1570z^6 + \dots$$

Switch Cographs

- Operations: 10
 - *T: strong twin

 - ${}^{s}\overline{T}$: strong anti-twin
 - ${}^{w}\overline{T}$: weak anti-twin





¹⁰ Montgolfier and Rao. 2005.

Normalization Rules

- SC-1. **Commutativity of twins**. The children of a node labeled sT or wT are unordered.
- SC-2. **Commutativity of anti-twins**. The non-leftmost children of a node labeled ${}^{s}\overline{T}$ or ${}^{w}\overline{T}$ are unordered.
- SC-3. The non-leftmost children of a node labeled ${}^s\overline{T}$ cannot be labeled wT . The conjugate is also a normalization.
- SC-4. The root is not labeled ${}^{s}\overline{T}$ or ${}^{w}\overline{T}$.
- SC-5. Associativity of anti-twins. The children of a node labeled ${}^s\overline{T}$ cannot be labeled ${}^s\overline{T}$. The conjugate is also a normalization.
- SC-6. The children of a node labeled ${}^s\overline{T}$ cannot be labeled ${}^w\overline{T}$. The conjugate is also a normalization.
- SC-7. **Associativity of twins**. The children of a node labeled ${}^{s}T$ cannot be labeled ${}^{s}T$. The conjugate is also a normalization.
- SC-8. Operator associativity of twins and anti-twins. The children of a node labeled wT cannot be labeled ${}^s\overline{T}$. The conjugate is also a normalization.

Results: Upper Bound Grammar

$$SC_{T} = ST + WT + Z$$

$$ST = SET_{\geq 2} (WT + SA + Z)$$

$$WT = SET_{\geq 2} (ST + WA + Z)$$

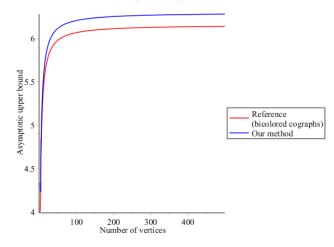
$$SA = (ST + WT + Z) \times SET_{\geq 1} (ST + Z)$$

$$WA = (ST + WT + Z) \times SET_{\geq 1} (WT + Z)$$

$$SC_{T} = z + 2z^{2} + 6z^{3} + 26z^{4} + 110z^{5} + 530z^{6} + \dots$$

Results: Comparisons

- Our bound: $O(6.301^n)$
- Reference exact bound: $O(6.159^n)$



Conclusion

Summary

- Demonstrate that vertex incremental characterizations and analytic combinatorics give asymptotically close upper bound enumerations (as a general methodology)
- Verified upper bounds for distance-hereditary graphs and switch cographs

Next Steps

- Consider other classes of graphs which may be more difficult to construct vertex incremental trees from, e.g., parity graphs
 - Difficulty: bipartite operation is much more difficult to describe
- Compare upper bounds from vertex incremental trees to others from graph-labeled trees/trees derived directly from tree decompositions (e.g., bijoin decomp.)