On the Undecidability of the Magnus, Word, Isomorphism, and
Markov Property Problems for Finitely Presented Groups

Jessica Shi
Advisor: Professor Adam Levine
Junior Seminar, Fall 2016

Contents
1 Introduction 2
1.1 Context o o e e e e e 2
1.2 Outline e 3
2 Preliminaries and definitions 4
2.1 Computational complexity definitions 4
2.2 Combinatorial group theoretic definitions 5
3 Z2-machines 7
3.1 Construction of Z2-machines « v v v v v i e 7
3.2 Construction of modified Turing machines 9
3.3 Halting problem for Z?-machines 10
4 HNN extension and Britton’s lemma 10
4.1 HNN exXtension v v v v v e e, 10
4.2 Britton’slemma e e e e e e 13
S Magnus problem 13
6 Word problem 17
7 Isomorphism problem 18
8 Markov property 19

9 Acknowledgments 21

1. Introduction

1.1. Context

One of the fundamental problems of knot theory is determining whether any two given knots are
equivalent. In particular, if a knot K is equivalent (ambiently isotopic) to a knot K, then R3\ K is
homeomorphic to R\ K3, and as such, the fundamental groups 7; (R?\ K1) and 7 (R? \ K) are
isomorphic. The fundamental group 7 (R \ K;) is known as the knot group, and is one of many
invariants on knots.

It can be shown that the unknot has group Z, whereas the trefoil has group (x,y | x? = y3>, hence
not all knots are equivalent to the unknot. Moreover, all knot groups can be finitely presented, by
a construction known as the Wirtinger presentation. In this manner, many questions about knots
are in fact related to more general questions about finitely generated groups, and Dehn [9] was
the first to formulate the question of knot equivalence in terms of finitely presented groups (note
that Tietze [30] was the first to formulate the isomorphism problem on finitely presented groups
in general, without reference to knots). In particular, Dehn raised the word problem, which asks if
there is an algorithm to determine whether w = 1 for any w € G, where G is a finitely presented
group. In terms of knot theory, this is equivalent to finding an algorithm to determine if a knot
K is trivial; this is because K is trivial if and only if the knot group is abelian (since it would be
isomorphic to Z), and determining if a finitely presented group is abelian simply involves checking
if the words a;aja; a7 equal 1, for all generators ay,...,a,. Dehn [9, 10] solved the word problem
on the fundamental groups of closed orientable surfaces and for the trefoil knot group, but not for
knot groups in general.

Later, Artin [3] solved the word problem for braid groups, and Waldhausen [32] solved the
word problem for all knot groups. Waldhausen’s general solution in fact refers to a topological
version of the word problem: given the fundamental group 7 (S), the word problem on 7; (S) is
equivalent to determining if a given closed curve on S is contractible.

The focus of this paper, however, is the undecidability of the word problem in general, on all
finitely presented groups (and related results). As such, we switch gears and give a short introduction
on the concept of an “algorithm”. There are three intuitive notions of what is “computable,” all
developed independently of each other. These are general recursive functions, introduced and
refined by Godel [11], A-computable functions, introduced by Church [7], and Turing machines,
introduced by Turing [31]. All three of these were proven to coincide, and the Church-Turing thesis
[7] hypothesizes that all three coincide with the concept of functions that can be computed in the
real-world, assuming unlimited computation resources. While there is debate about whether the
Church-Turing thesis is a hypothesis or a definition, generally an “algorithm” is taken to be one that
can be performed by a Turing machine.

In brief, a Turing machine consists of a finite automaton, which memorizes “states” that the
machine is in, and an infinite tape with a read/write mechanism. The machine can write to and
move along the tape according to the state it is in, and can change states according to what it reads
from the tape. Given an input, a Turing machine may never stop computing, or halt, but if it does,
it does so on either an accept state or a reject state. In this manner, a Turing machine can answer
yes/no questions. The notion of decidability, then, is whether a yes/no question can be answered by
a Turing machine. If so, the question is said to be decidable.

Based on this formal definition of computability, Church [8] hypothesized that the word problem

is undecidable (he also hypothesized that the knot problem is undecidable). Following this, a series
of discoveries eventually proved this hypothesis correct.

First, Post [23] and Markov [16] independently proved that the word problem on semigroups
is undecidable. Then, Boone [4] defined the quasi-Magnus problem and prove it undecidable; the
quasi-Magnus problem asks, if given a finite presentation G = (A | R), a subset S C A, and a word
o € G, whether w can be formulated as a word on S with positive exponents. The corresponding
Magnus problem, which asks if @ is in the subgroup generated by S, is closely related to the word
problem (this problem was first formulated by Magnus [14], who also solved it on one-relator
groups).

A few years later, Boone [5] proved that the word problem is undecidable. Independently,
Novikov [21] proved that the word problem is undecidable as well. However, their arguments were
primarily combinatorial, and have been superseded by group theoretic results. Namely, Higman,
Neumann, and Neumann [13] introduced the HNN extension, which Britton [6] used to replace
the combinatorial arguments in Boone’s original proof. This is the argument we use to prove the
undecidability of the word problem here, and specifically, we use a version of Aanderaa and Cohen’s
[1] formulation that also proves the undecidability of the Magnus problem in the process.

Now, the isomorphism problem can be directly proven undecidable from the undecidability
of the isomorphism problem [22], but it was first proven undecidable as a result of stronger
results independently by Adian [2] and Rabin [24]. Specifically, Adian and Rabin proved that any
question about finitely presented groups regarding a property that satisfies the Markov property
is undecidable. The Markov property was first introduced by Markov [15, 16, 17] in reference
to the same decidability problem on semigroups, and includes isomorphic, abelian, finite, trivial,
torsion-free, free, and simple.

This concludes the material we will introduce in this paper. Before we delve into the paper, we
note one important consequence of these undecidable problems, that is outside the scope of this
paper. From a topological perspective, Markov [18] used the results of Adian [2] and Rabin [24] to
prove the undecidability of the homeomorphism problem. Specifically, any finitely presented group
can be represented as the fundamental group of a closed n-manifold for any n > 4, and if we let
M(G) represent the 4-manifold with fundamental group G, Markov showed that G, is isomorphic to
G, if and only if M(G;) is homeomorphic to M(G,). Thus, the isomorphism problem reduces to the
homeomorphism problem, showing the homeomorphism problem undecidable.

1.2. Outline

In Section 2, we introduce some preliminaries and definitions related to computational complexity
and combinatorial group theory. In Section 3, we discuss a modification to the Turing machine
that will aid the proof of the undecidability of the Magnus problem. In Section 4, we introduce the
HNN extension and Britton’s lemma, which we use in Section 5 to prove the undecidability of the
Magnus problem. In Sections 6 and 7, we use the results of Section 5 to prove the undecidability
of the word and isomorphism problems respectively. In Section 8, we extend the undecidability of
the word problem to prove the undecidability of any problem on finitely presented groups about a
property that satisfies the Markov property.

2. Preliminaries and definitions

2.1. Computational complexity definitions

Informally, a Turing machine (TM) consists of an infinite tape and a read/write head that moves
along the tape according to a finite automaton. The machine initially takes an input string on
the otherwise empty tape; it reads the tape by moving the head to the left or right, and it stores
information by writing on the tape. The finite automaton includes two distinct states, an accept state
and a reject state, and the machine accepts or rejects the input upon entering the accept state or the
reject state respectively. Note that the machine may never enter an accept or reject state, in which it
runs forever and does not halt. Formally, we define a Turing machine as follows.

Definition 2.1. A Turing machine is a 7-tuple, (Q,X,T", 8, q0, Gaccept; Greject) Where Q, X, T" are finite
sets and

Q is a set of states,

¥ is the input alphabet,

I" is the tape alphabet (note that £ C T'),

0:0xI'— O xTI x{L,R} is the transition function,
qo € Q is the start state,

Gaccept € O 1s the accept state, and

AL R

Greject € Q is the reject state, where Gaccept 7 Greject-

Note that for (¢, w,x) € §(Q x I), g denotes the next state of the finite automaton, @ denotes
writing @ on the tape under the current position of the head, and x denotes moving the head to the
left or to the right. For (¢,) € Q x T, g denotes the current state of the finite automaton and @
denotes the character on the tape under the current position of the head. Moreover, note that the
blank symbol, denoted .., is an element of the tape alphabet I', but not the input alphabet X.

For the purposes of this paper, we will often not concern ourselves with using the formal
definition of the Turing machine, and will instead use the commonly accepted abstractions. Moreover,
many of the steps we take in the proofs of this paper will be computable (albeit tedious), so we will
often not explicitly detail how a Turing machine can carry out those steps. The formal definitions
will primarily be relevant in Section 3, where we construct a modified version of a Turing machine.

Note that the current state, tape contents, and head location encapsulate a “step” of a Turing
machine, and with each use of the transition function, these items may change. We denote a setting
of these items to be a configuration of the Turing machine, and in particular, we can represent any
configuration as the word uqv, for state ¢ € Q and strings u,v € I'T* = I'". Here, the tape contains
the string uv (and contains only blank symbols .. before the first character of u and following the
last character of v'), and the head location is at the first symbol of v. We call this representation a
complete state of the Turing machine.

As an aside, for any string u € I'*, note that u may be the empty string, which we denote as €.
Moreover, we let u® denote the reverse of u; that is to say, for u = u;...u, where u; € I', we let

R =u, .. uy.

'Here, we take a Turing machine to have a two-way infinite tape, which is equivalent to a Turing machine with a
one-way infinite tape.

Now, for a given Turing machine M, the language of M, denoted L(M), is the set of all strings
that M accepts.

Definition 2.2. A language L is decidable if there exists a Turing machine M such that M halts on
all inputs and L(M) = L. We say that M decides L.

One of the most famous undecidable problems, first introduced by Turing [31], is the halting
problem, which asks, “For a Turing machine M and input @, does M halt on input ®?” More
formally, the following language is undecidable:

HALT = {(M,®) | M is a TM and M halts on input ®},

where the angular brackets (-) denote a suitable encoding of M, ®°.

A common technique for proving that a problem is undecidable is reducibility, which involves
converting an undecidable problem into the given problem, such that a decider for the given problem
could be used to give a decider for the undecidable problem. The proofs in this paper will formulate
everything in terms of proofs by contradiction, which should be clear even without an understanding
of reducibility. However, for the sake of formality, we have the following definitions.

Definition 2.3. A function f : X¥* — X* is a computable function if there exists a Turing machine M
such that for all inputs @, M halts with f(®) on its tape.

Definition 2.4. A language A is mapping reducible, or reducible, to a language B, denoted A <,,, B,
if there exists a computable function f such that for every ®, @ € A if and only if f(®) € B. f is
the reduction from A to B.

Proposition 2.1. For languages A, B, if A <,, B and A is undecidable, then B is undecidable.

In Sections 35, 6, and 7, we show that the halting problem reduces to the Magnus problem, which
reduces to the word problem, which reduces to the isomorphism problem, thus showing that all
three problems are undecidable. We forego a proof of the undecidability of the halting problem for
the purposes of this paper, and instead reference Turing’s [31] diagonalization proof.

2.2. Combinatorial group theoretic definitions

We now introduces some group theoretic terms and notations. A free group is a group with generators
that satisfy no relations other than those that are given by the group axioms. A free group can be
described by an arbitrary set of elements, say S = {ay,a, ...}, which represent the generators of
the group. For a free group on S, we define a word to be a finite string of generators or their inverses,
ie. afllafj .. .af}f where g € {—1,1}.

ZNote that there is a distinction between decidable and recognizable. A language L is recognizable if there exists
a Turing machine M such that L(M) = L (so M is not required to halt on all inputs). A decidable language is also
known as a recursive language, and a recognizable language is also known as a recursively enumerable language. Many
sources regarding the word problem claim to show that the word problem is unsolvable, but this language is not quite
precise because sometimes “solvable” is equated with “recognizable,” whereas these sources actually prove that the
word problem is undecidable and the word problem is in actuality recognizable [28, 29]. For the purposes of this paper,
we use the term “decidable” to avoid confusion.

3Note that the halting problem is undecidable, but recognizable, hence the importance of the distinction between
the two terms. The complement of the halting problem is an example of a problem that is both undecidable and
unrecognizable [27].

For any word @ in a free group on S, we can reduce @ by canceling all subwords of the form
aia; " or a; 'a;. We can repeatedly reduce @ until there are no such subwords left, and the word we
receive, say y, is called the reduced form of @. Note that there is exactly one reduced form for any
given ®.

A relation R among elements ay, . . .,a, of a group G is a word r in the free group on {ay,...,a,}
that evaluates to 1 in G. Given a free group F on S = {aj,as,...} and a subset R = {ry,r2,...} of
F, the group generated by S with relations ry,r,... is the quotient group G = F /R, where R is
the normal subgroup of F generated by R. The sets S and R are called a group presentation of G,
denoted by (ay,az,...|ry,r,...). If there exist S, R such that S and R are finite sets, then G is said
to be finitely presented.

Also, for any group G and subset S C G, we let (S)g denote the subgroup of G generated by S.
Note that we may drop the subscript if the group G is clear.

For any two presentations G = (Sg | Rg) and H = (Sy | Ry), we define the free product to be
GUH =G *H=(S¢USH | Rc URp). Given the homomorphisms ¢g : F — G and ¢ : F — G
from some group F, we define the amalgamated product or free product with amalgamation to be
G*rH=(G*H)/N, where \ is the normal subgroup of G * H generated by elements of the
form ¢g(f) ¢y (f)~! for all £ € F.In more colloquial terms, the amalgamated product G * 7 H is
given by the free product G * 7 with the added relations ¢g(f)@y (f) "' =1forall f € F.

We can now define the Magnus, word, and isomorphism problems.

Magnus Problem. [14]. Given a finitely presented group G, a subset {ay,...,a,} of the generators
of G, and a word @ € G, is @ in the subgroup generated by {aj,...,a,, }? More formally, the Magnus
problem is given by the following language:

MAGNUS = {{(A | R),A",w) | A’ CA,w € (A | R), and @ is in the subgroup generated by A’}.
Word Problem. [9]. Given a fixed finite presentation of a group G and a word ® € G, does @ = 1
in G? More formally, the word problem is given by the following language:

WORD = {((A|R),w) |0 € (A|R) and ® = 1}.
Isomorphism Problem. [9]. Given two finite presentations (ay,...,an | r1,...,7m) and (b1,...,b, |

S1,-.-,84), do they represent isomorphic groups? More formally, the isomorphism problem is given
by the following language:

ISO={((A|R),(B|S)) | R,S are relations on A, B respectively and (A | R) = (B | S)}.

We also define the Markov property, and formulate the decidability question regarding the
Markov property.

Definition 2.5. [15, 16, 17]. Let P be any property of finitely presented groups that is preserved
under isomorphism. P is a Markov property if

1. there is a finitely presented group with property P and

2. there is a finitely presented group that cannot be embedded into any finitely presented group
with property P.

Markov Property Problem. Given a fixed finite presentation of a group G and a property P that
satisfies the Markov property, does G have property P? More formally, the problem is given by the
following language:

MARKOVp = {(A | R) | (A | R) has the property P where P is a Markov property}.

6

3. Z2-machines

Here, we introduce a modification to the standard Turing machine and to the halting problem, which
will facilitate the reduction in Section 5. Specifically, we define the Z-machine, which represents
each complete state as a pair of integers that allows the transition function to be represented by
arithmetic computations. Z?-machines were first introduced by Minsky [19] as [-machines and later
refined by Aanderaa and Cohen [1] as modular machines. Aanderaa and Cohen used the modular
machine to provide a proof for the undecidability of the word and isomorphism problems, and the
proof we give here in Sections 6 and 7 are based on their proof. This form of the Z>-machine was
constructed by Stillwell [29].

3.1. Construction of Z2-machines

First, for a Turing machine M = (Q,X,T",0 ,qo,qaccept,qreject), consider any complete state ugv,
where ¢ € Q and u,v € I'*. Then, (ug,VX) is a complete state pair. We can interpret this pair as an
element of N2 by considering the symbols Q UT as digits in base b = |Q| + ||, where we associate
— € I' with the digit 0.

Note that since .. is associated with 0, the infinite blank spaces to the left and right of u and
v respectively on the tape are represented in the complete state pair. This results in precisely one
complete state pair for any configuration of M (whereas based on our definition of “complete state”
in Section 2.1, there may be more than one complete state for any configuration of M), since u and
vR uniquely represent the entire infinite tape.

Now, note that the transition function can be given by quintuples (g;, ®;, gy, ®;,x) where
(9i,0;) € O xT and (g, wy,x) € Q x I x {L,R}. This quintuple acts on complete states of the
form uq;;v. In particular,

(gi, 0}, g, jr, L) : uayq;@;v — ugy om;v,

o))

(9, 0,97, @y, R) : uqi@;@py — u®;q; o,

where @ € T'and u € ',y € T'*. In terms of complete state pairs, the quintuple (g;, 0;j,q;i,® j/,x)
acts on pairs of the form (ug;,v®;). Thus, we have
(qi7 (Dj?Qila wj/7L) : (”a)k%'a V(Oj) — (uCIilvva)j’wk)u
(qi; Wj,qir, Qjr R) : (I’tQi) V(Dkwj) - (uwj’Qi’7 V(Dk).

2)

Note that v in Equation 2 is equal to v¥ in Equation 1; we make this change of notation for simplicity.
Since complete state pairs are elements of N2, when considered in base b, we can write these
transformations arithmetically, as

(Qb wj,qy, a)j’7L) : (bz U+ kai7b'v+ w]) — (b'u—i_qi/?bz v+ a)j’wk), 3)
(gi» @}, g, 0y, R) : (b-u+q;,b* v+ opw;) = (b* u+ 0;qy,b-v+).

Since the transition function can be fully expressed in terms of these quintuples, we can instead
write a transition function for complete state pairs in terms of transformations of the forms

(b*>-U+Ap,b-V+By)— (b-U+Cy,b*-V+Dy), 4)
(b-U+A,,b*-V+B,)— (b*-U+C,,b-V+D,). (5)

We call all transformations in the form of Equation 4 ¢-transformations, and we call all transforma-
tions in the form of Equation 5 r-transformations. Note that Ay, B,,C,, D, represent 2-digit base b
numbers, and A,, By,Cy, D, represent 1-digit base b numbers. Also, when we refer to transformations
of these forms, we refer to transformations that apply for all U,V € N, where Ay, By, Cy, Dy, A;, By,
C,, D, are constants.

Note that the /- and r-transformations form our Z?-machine, say Z. Z takes as input (go, ®)
where @ € ¥* (and if ® = &, we take the input of Z to be (go,0)). Z accepts an input if, after
successively applying ¢- and r-transformations, there are no more transformations to be applied,
and the last complete state pair in the sequence is of the form (ugaccept, V). Z rejects an input if, after
successively applying /- and r-transformations, there are no more transformations to be applied,
and the last complete state pair in the sequence is of the form (uqreject,v). Z halts on an input
if after successively applying ¢- and r-transformations, there are no more transformations to be
applied. Note that this is a purposefully broader definition of “halting” than on Turing machines.
The construction thus far focuses on modifying a Turing machine to be a Z>-machine, but note that
we can also consider a Z?-machine as its own construct. We give a generalized definition as follows:

Definition 3.1. A Z?-machine is a 7-tuple, (Q,X,T’, 8’ ;40> Gaccepts Greject)» Where Q, X, I" are finite
sets and

Q is a set of states,

¥ is the input alphabet,

I' is the tape alphabet (note that ¥ C I'),

8 :N? 5 N2isa partial function, where the transformations in &’ are /- or r-transformations,
qo € Q is the start state,

Gaccept € O s the accept state, and

NSk L=

Greject € Q is the reject state, where Gaccept 7 Greject-

Note that as in the construction, Z begins with some input @ € X*, and uses &’ successively on
(90, ®) € N? (when considered as base » numbers) until no more transformations can be applied. Z
may run forever, or Z may halt, in which Z may accept the input, reject the input, or neither.

Now, given a Turing machine M, denote the Z2-machine constructed by the above procedure
(that is, transforming the transition function of M into the corresponding /- or r-transformations) by
Z(M). We now claim that M and Z(M) are equivalent machines on the domain of inputs X*.

Lemma 3.1. Given a Turing machine M = (Q,X,I", 8,90, quccept, Greject), M and Z(M) are equiva-
lent on the domain of inputs £*. That is to say, M accepts if and only if Z(M) accepts, M rejects
if and only if Z(M) rejects, and the contents on the tape of M upon halting are equivalent to the
contents of the complete state pair of Z(M) upon halting.

Proof. This is clear because we have a bijection between configurations and complete state pairs,
and a bijection between the transition function and the /- and r-transformations. The former follows
from the fact that a complete state pair completely encodes the tape of the Turing machine, and the
latter follows from construction.

Moreover, for each configuration of M, exactly one transition can act upon that configuration,
and by construction, for each corresponding complete state pair, exactly the corresponding /- or

8

r-transformation can act upon that pair (this is clear because if not, we can work backwards from
Equation 3 to Equation 1 to obtain two transitions that act upon the same configuration, which
is a contradiction). Thus, we have a transition applies to a configuration in M if and only if the
corresponding /- or r-transformation applies to the corresponding complete state pair in Z(M).
Thus, examining the configurations of M and the complete state pairs of Z(M) resulting from
any input @ € X*, we see that M and Z(M) produce the same output. 0

3.2. Construction of modified Turing machines

Now, Stillwell [29] uses the universal Turing machine to define a version of the halting problem
on Z?*-machines. However, universal Turing machines are a more powerful tool than necessary
to achieve the required reduction, so instead we introduce a modification to Turing machines in
general. Stillwell [28] introduces a similar modification, but we utilize a version that is easier to
formalize. This modification is not unusual, and indeed is commonly used when constructing a
tableau representation of a Turing machine [27]. Simply put, we modify any given Turing machine
so that upon reaching an accepting or rejecting state, it clears the contents of the tape and then
enters an arbitrary halting state; we do this by ensuring that the Turing machine never writes a blank
space .., and then uses .. to determine the used sections of the tape. We give a formal definition as
follows.

Definition 3.2. Given a Turing machine M = (Q,X,I", 8,90, Gaccept: Greject), We define a modified
Turing machine M(M) to be the Turing machine (QU{qr,qn,q},},Z,TU{#},8’, 90,91, 9),) where
q0,q9n.q), ¢ Q, # ¢ T', and &' is defined as follows:

1. For every (q,®) € Q x T such that 8(q,®) = (¢,_,x) for some ¢’ € Q,x € {L,R}, let
8'(q,) = (¢, #,x).
2. Forevery (q,0) € Q x'suchthat §(q, ®) # (¢, _,x) forall¢ € Q,x € {L,R},let §'(q,0) =
8(q,).
For every g € Q, let 8'(q,#) = 8'(q,).
For every o € (FU {#}) \ {w}, let 5/((]accept7 (O) = 6/(qreject7 (D) = (qaccept; (O,R).
Let 5,((]accept7 w) = 8/(Qrejecta M) = (‘H7 ~>L>~
For every o € (TU{#})\ {_}, let §'(q¢, ®) = (g, —,L).
Let 5’(%» M) = (q1’lv MaL)-
This fully defines &', and note that by definition, if M halts on input @ € £*, then M (M) will
halt on input @ with an empty tape and in state g, (that is to say, M (M) accepts input @ with an

empty tape). We forego a formal proof of this, since it would be merely tedious and the result is
clear from construction.

N kW

Lemma 3.2. Given a Turing machine M = (Q,X,T", 0,90, qaccept; Qreject) and input @ € £*, M halts
on input @ if and only if M(M) accepts input @. Moreover, if M(M) accepts input @, then M(M)
accepts @ on an empty tape.

3.3. Halting problem for Z>-machines

We can now formulate the halting problem for Z?-machines, as follows.
Halting Problem. Given a Z’-machine Z and an input ®, does Z halt on input @ in the pair (0,0)?
More formally, the halting problem for Z2-machines is given by the following language:

HALT,: = {(Z,®) | Z is a Z*-machine and Z halts on input @ in pair (0,0)}.
We show that HALT > is undecidable by a reduction from the standard halting problem, HALT.

Lemma 3.3. HALT > is undecidable.

Proof. Assume HALT is decidable by a TM H. We construct a TM H’ to decide HALT, with
input (M, ®).

First, we have H' construct the modified Turing machine corresponding to M, M (M), based
on the steps in Section 3.2. Then, we have H’ construct the Z>-machine corresponding to M (M),
say Z(M(M)) = (Q,Z,T', 8,90, Gaccept> Greject) based on the steps in Section 3.1. We have H' add to
Z(M(M)) the ¢-transformations

(b2 U+ Wy Gaccept; b- V) - (b) Uvbz V+ wk)

for all @y, € T, giving a new Z?-machine, say Z.

Now, we have H' run H on (Z, @), and if H accepts, then H' accepts. Otherwise, H' rejects.

We now claim that H” accepts if and only if M halts on input ®. Clearly, if H' accepts, then
this means that Z halts on @ in pair (0,0), which means that Z(M(M)) accepts @ in pair (gaccept,0),
which means that M (M) accepts @ (by Lemma 3.1), which means that M halts on @ (by Lemma
3.2), as desired. If M halts on m, then M (M) accepts @ with an empty tape (by Lemma 3.2), which
means that Z(M(M)) accepts @ in state (gaccept,0) (by Lemma 3.1), which means that Z halts on @
in pair (0,0). Thus, H accepts (Z, @), so H' accepts, as desired.

However, HALT is undecidable, so we have reached a contradiction. Thus, HALT > is undecid-
able. O

4. HNN extension and Britton’s lemma

When Boone [5] and Novikov [21] first proved the undecidability of the word problem, they used
combinatorial arguments, that are somewhat complicated and that we will not address in this
paper. Instead, those arguments have been superseded by group theoretic results, mainly the HNN
construction, which was first introduced by Higman, Neumann, and Neumann [13] (prior to the
solution to the word problem). Britton [6] used these arguments to give a different proof of the word
problem, introducing Britton’s lemma in the process. We discuss the HNN construction in Section
4.1, and Britton’s lemma in Section 4.2.

4.1. HNN extension

First, we define the HNN extension.

Definition 4.1. Let G be a group, and let pairs of elements b;, ¢; define an isomorphism between
the subgroups B and C generated by b; and c; respectively, such that b; — ¢;. Then, the group
GF=GU(t|{t 'bit = c;}) is the HNN extension of G with stable lettert.

10

Essentially, we have defined G; such that the isomorphism b; — ¢; is induced by conjugation
by the stable letter . Moreover, Higman, Neumann, and Neumann [13] proved that G embeds into
G, Britton [6] proved the aptly named Britton’s lemma using this result, and this in combination
with Higman, Neumann, and Neumann’s work is equivalent to a unique normal form of each of
the elements in G;". This normal form was first introduced by Schupp [26], and incidentally, it is
simpler to prove the uniqueness of this normal form directly, and then derive Higman, Neumann,
and Neumann’s and Britton’s results from that. As such, we discuss the normal form and give a
proof of uniqueness, and later derive the necessary results.

Now, any given word in G/ is of the form gor¥1g 152 g, ...t%g;, where g; € G and € = £1 (note
that g; may be 1). We would like to transform these words into a form in which for all i # 0, g; is
given by a coset representative of either B or C. For the sake of consistency, we take “coset” to
mean “right coset.”

First, let ¢ denote the isomorphism between B and C, given by b; — ¢;. We fix a set of
coset representatives of B and of C in G, denoted by {gp,;} and {gc;} respectively*. Let 1 be the
representative of the coset B and the representative of the coset C.

For i = k to 1, we perform the following operation:

If &; = —1, then consider the factorization of g; into b;gp ; for b; € B and some coset representa-
tive gg ;. Note that

thgi =1t "bigg;=1""td(b)t 'gri= o (bi)t 'gp,.

So, replace t%ig; with ¢ (b;)t ' gp ;, and combine ¢ (b;) with g;_ to receive a new g;_;.
Similarly, if & = 1, then consider the factorization of g; into c;gc; for ¢; € C and some coset
representative gc ;. Note that

thgi=tcigci =1t "¢ (ci)tgci =9 '(ci)tgc;.

So, replace t%ig; with ¢ ~!(c;)tgc,;, and combine ¢ ~!(c;) with g;_| to receive a new g;_i.

After this loop, we remove any words of the form 7 -1 .t~V orof the form¢—1-1-1.

This gives us gyt g1%gh...1%g! where §; = +1, go € G,and g, for i # 0 is a coset represen-
tative B or C when 0; = —1 or §; = 1 respectively.

Now, note that each g/ can be replaced by any equivalent word in G; in order for this normal
form to be unique, we replace g’ by its equivalence class, denoted [g}], in G. Thus, we have

/

(801 (1)1 2[gh] .. .19 [g),],

which we call the normal form of the element got¥1g 152 g, ...t%g; € G. Note that when we discuss
normal forms, we omit the brackets |- | and assume that it is clear that when we reference an element
g§ € G, we mean the equivalence class of that element.

We now establish the uniqueness of this normal form.

Lemma 4.1. Given a group G, the normal form of an element of its HNN extension G/ is unique.

“Note that the normalization process is not necessarily computable by a Turing machine, and we will not need to
normalize in any construction involving Turing machines.

11

Proof. We first construct a homomorphism p : G — S(N), where N is the set of all normal forms
in G and where S(N) is the set of all permutations 7w : N — N. We now define p as follows.
For g € G, let p(g) be given by

p(g)(gor® ...1%g) = ggor® .. .1%g,

and let p(¢) be given by

0 '(20)811%g. . .1%g), if & = —landgyeC
P(t)(g6t81 ---lskgfc) =q¢! (c)tggt‘slg’l .. .tskg;c, otherwise, where g(, = cg(, for coset
representative gy € G and ¢ € C.
First, note that p(g) is clearly a permutation of N (since it merely involves left multiplying g) and
gives a homomorphism, since for g, g’ € G, we have p(gg') = p(g)p(¢’) and p(1) = 1. Also, we
claim that p () does indeed give a permutation of N, since we can define an inverse
0(20)81t285... 1%}, if & =1and g, € B
p(t")(gor% .. .1%g) = o(b)r'gptdgh .. .t%gh, otherwise, where gy = bgl for coset
representative gy € G and b € B.
We now verify that p(t)p(t~!) = 1. Consider any given normal form g% .. .t5kg;(. We split this

verification into cases.
For the first case, let §) = —1 and g{, € C. Note that the first case of p(r) applies, so we have

O

p(r)(gor® ...1%g)) = 0 (g0)g1%gh . . .1%g}.

Now, note that since g} ¢ B, we have ¢ ~!(gf,)g} ¢ B, so the second case of p(+~!) applies. Moreover,
since ¢ ~!(g}) € B, we have the coset representative of ¢ ~!(g})g} is g}. Thus,

P70 (g0)g1t%gh- . .1%g}) = (0" (gp))t 8] . .1%g}
= got%g) ... 1%g].

For all other cases, the second case of p(¢) applies, so we have

() (g6t - 1%gk) = 0 (c)rggr®'gh - .. 1%
where g, = cg for coset representative g € G and ¢ € C. Trivially, ¢~ '(c) € B, so we have
P (97" ()rgor gl - 1%gk) = 997" (¢))g0t” 81 - - 1% gk
= g{)tslg/] .. .t‘s"g;(,

as desired.

Similarly, it is easy to check that p(t~")p(¢) = 1, so p(t) does indeed give a permutation
on N. To complete the proof that p defines a homomorphism, we need only show that for ¢ € C,
p(c)=p()p(¢~'(c))p(t). This again can be checked with a great deal of casework, which we
omit for the purposes of this paper.

12

1% ... t%gl in normal form, p(gpt% ...t%g,)(1) =

g6t5' % g, Assume for purposes of contradiction that two distinct normal forms ny,n € N corre-
spond to the same 4 € G;. Then, p(h) = p(n;) = p(n2). However, p(n1)(1) =n; and p(ny)(1) =ny
(where n] # np when considered as elements of N), so clearly p(n;) # p(n2), which is a contradic-
tion. Thus, n; and n, must represent distinct elements in G/, as desired. O]

We now claim that it is sufficient that for gj,

Corollary 4.2. Higman, Neumann, Neumann [13]. G — G/'.

Proof. This follows immediately, since every [g] € G is identical with its normal form. O
4.2, Britton’s lemma

Britton’s lemma follows directly from Lemma 4.1.

Corollary 4.3. Britton’s lemma [6]. Let @ = got*'g1t%2 g, .. .t% g, € G, where g; € G and & = +1.
If o =1inG/, then either

1. k=0and gy =1, or

2. k> 0 and o contains either a subword t — bt where b € B or a subword tct—! where ¢ € C.

Proof. Note that if kK = 0, then trivially go = 1. Now, we consider the case where k£ > 0. Note that
by Lemma 4.1, the normal form of ® is unique, namely 1. As such, in normalizing @, we must at
some point cancel #~! or t~'z. Thus, we must have either a subword rg;z ! or ¢~ g;t.

Now, if we have a subword tg,-fl, when normalizing g;, 1, we insert some ¢ € C to receive
tgict~'. Necessarily, then, we must have g;c € C, in order to move g;c to the left when normalizing
g} (to receive 1t71). Thus, g; € C, as desired.

Similarly, if we have a subword ¢! g;¢, when normalizing g; |, we insert some b € B to receive
t~1g;bt. Necessarily, we must have g;b € B3, in order to move g;b to the left when normalizing gl (to
receive ¢~ !¢). Thus, gi € B, as desired. L]

5. Magnus problem

We now have all of the tools necessary to prove that the Magnus problem is undecidable. We use a
methodology that is similar to one that Aanderaa and Cohen [1] uses to prove the undecidability
of the word and isomorphism problems. However, their version is slightly more complex, and this
version is simpler in terms of computation. The version here is reproduced from Stillwell’s [28]
treatmenet of the Magnus, word, and isomorphism problems.

We focus on a specific case of the Magnus problem, namely on free groups of rank 3, say
F= <x,y,z ’ _>' o

First, we define p(i, j) = x'zy/ for (i, j) € N?. The idea here is to apply p to complete state
pairs, sending complete state pairs to elements of F. As such, we would like to define /- and
r-transformations as isomorphism Yy and y, respectively. Recall that an /-transformation is given
by (b*U +Ay,bV + By) — (bU +Cy,b*V 4 Dy). Applying p(-), we have

2 , X 2)
Xb UJrA(gZbeJng S xbU+CyZyb VJrD[.
Thus, we see that we can define yy as
2 ‘ 2
"7, x s xb AgyBe s xCigyPe 3P s P

13

Similarly, recall that an r-transformation is given by (bU +A,,b?V + B,) + (b*U +C,,bV +D,).
Applying p(-), we have

2 2
xbU+A,Zyb V+B, —)Cb U-I—Crzbe—l—Dr‘

Thus, we can define v, as

2 2
v Xl X gy xCrgyPr)P ey

We now show that yy and y, are isomorphisms. We do so using the following lemma:

Lemma 5.1. Let F = (x,y,z | —) and let uy = X, u = x'zy/, and u3 = y", form,n # 0 and i, j € Z.
Then, {uy,uy,us} is a basis for the subgroup of F that it generates. Moreover, if X' zy/' € (uy,uy,u3 |
—), theniy =i+mymand j| = j+nin for my,n| € Z.

Proof. We first show that there are no nontrivial relations between u1, u, and u3, hence showing
that {u1,up,us} forms the basis of the free subgroup that it generates. Consider any nontrivial word
o on the subgroup (uy,uy,u3) F such that @ = 1. Trivially, if @ is solely in terms of u; and u3, then
since is nontrivial, @ # 1. Thus, ® must contain some instance of u,, and in fact, @ must contain
multiple instances of u,. Consider any two consecutive instances of u, (separated only by instances
of u; and u3).

If the exponents of the consecutive u, instance have the same sign, then trivially we have @ # 1,
since we have a 7" term that cannot be canceled. If they have different signs, then we have one
of two cases: either we will have the subword zy"cty "z~! or the subword z~'x " ox™z for some
reduced word o on u; and u3 where & # 1 (otherwise, we have uyu, Vor Uy luz, which is trivial). In
the case of zy"ay "z, in order for the y"ay™" subword to disappear, we must have the exponent
sum of y be 0, in which case the exponent sum of y in o must be 0. Since « is reduced, & must be a
word on u; (and not u3). In that case, though, the exponent sum of x cannot be 0, so "oy~ cannot
disappear. A similar argument applies to z~'x ™" ox™z. Thus, no such o exists.

Thus, we have no nontrivial relations between uy, u», and u3, so the subgroup generated by
{ur,up,u3} is exactly (ul,uz,bgg | .—>. o

Moreover, for any @ = x'Izy/! € (uj,up,us | —) where x'1zy/! is in reduced form, note that
® contains exactly one occurrence of u;, since at least one occurrence is needed to produce the
z component, and more than one nontrivial occurrence will not cancel any z components by the
previous argument. Trivially, we also note that no u3 component can occur to the left of the u;
occurrence, and no u; occurrence can occur to the right of the u; occurrence. Thus, @ = u'lnl uzug”
for my,n; € Z, so we have x'1zy/l = x'tmmzyi+tmn_ Since both sides are in reduced form, we must
have iy =i+mym and j; = j+nn, as desired. O

Thus, by Lemma 5.1, we have the subgroups generated by {xb2 ,p(As,By),y?} and {x*, p(Cy, Dg),ybz}
are free with rank 3, so since y; defines a mapping of the bases of these subgroups, it is an isomor-
phism. Similarly, Y, is an isomorphism, as desired.

Now, consider any Z2-machine Z. Let {¢1,...,¢,} and {ry,...,r,} denote all of the /- and
r-transformations respectively of Z. Let yy, and y,, denote the corresponding isomorphisms for /;
and r; respectively, and let T = {ty,,...,t;,,t,,,...,t, }. We perform a series of HNN extensions
with stable letters 7 on F, where each yy, is induced by conjugation with stable letter #,, and each
Y, is induced by conjugation with stable letter 7,,. We denote the result of these HNN extensions

Fi(2).

14

Note that clearly, given a transformation from one complete pair to the next in Z, we have the
corresponding Y isomorphism that translates p(-) of that complete pair to the next in F, which
gives us a corresponding conjugation in F7(Z). We must, however, show essentially the converse,
namely that every conjugation of elements in F7.(Z) that could be translated into complete state
pairs and interpreted as a transformation in Z does indeed represent a valid transformation. To do
this, we prove a series of lemmas.

Lemma 5.2. If (X,Y) is a complete state pair, then at most one of Y, or y,, applies to p(X,Y).

Proof. First, if y, applies to p(X,Y), then necessarily p(X,Y) € (xbz, p(Ay,By,),»). Tt is easy to
check that necessarily, X = Ay, + mgib2 and Y = By, +ny,b for my,,ny. € Z (alternatively, we have
checked this formally in Lemma 5.1).

Recall from Section 3.1 that Ay, is a 2-digit number in base b, and By, is a 1-digit number in
base b. Thus, considering X and Y in base b, these two equations fully determine the values of Ay,
and By,. Moreover, the values of A, and By, fully determine the corresponding /-transformation,
since at most one /-transformation can apply to any given complete state pair in Z. As such, they
fully determine y;,, so at most one Y, can apply to p(X,Y).

Similarly, we have at most one ;. can apply to p(X,Y).

Now, it is clear that y;, and y,; cannot both apply to p(X,Y) for some i, j, since if so, then
X =Ay +mgl.b2 =A;;+mybandY =By, +nyb =By, +nrjb2 for my,,my;,ny;,ny; € Z. Then, the
last digit of Ay, would equal the last digit of A, and the last digit of By, would equal the last digit of
B,;. By inspection, this would cause the {- and r-transformations to have overlapping domain for
some complete state pair, so the partial function of Z, ' : N 2 5 N2, is not well-defined, which is a
contradiction.

As such, at most one of yy, or y,, applies to p(X,Y). O

Now, Lemma 5.2 shows that “fake” computations aren’t permissible in , and as a result, most
“fake” computations aren’t permissible in F7.(Z). However, when translating from F to F;(Z), the
isomorphisms become represented by conjugations by 7'; this forms an equality between consecutive
computation steps (rather than defining consecutive computation steps by a function), which adds a
bidirectionality. Specifically, using some y isomorphism, p(X,Y) maps to p(X’,Y’) but not vice
versa (unless permissible by another isomorphism), whereas using conjugation by some ¢, p(X,Y)
equals some conjugate of p(X’,Y’) and vice versa.

In order to prohibit this bidirectionality, we use an argument given by Post [23] in proving the
word problem on semigroups. We define the halting subgroup, denoted Fy(Z), to be

Fo(Z) = {p(U,V) | (U,V) is a complete state pair which Z converts to (0,0)}).
Lemma 5.3. F((Z) is closed under all l//atl and Wi,

Proof. Consider any p(U,V) € Fo(Z). By Lemma 5.2, at most one of y, or ¥, applies to p(U,V).
Without loss of generality, let some y apply to p(U,V), so y(p(U,V)) = p(U’,V’). Then, (U’,V’)
must be the complete state pair that results from applying the corresponding /- or r-transformation
to (U,V), so since Z converts (U,V) to (0,0), Z must also convert (U’,V’) to (0,0), as desired.
Thus, p(U",V') € Fo(2).

SNote that Fy(Z) C F C F3(2).

15

Now, we must consider y/gl and v, . Note that if for some y, ! (p(U,V)) = p(U’, V'), then
v(p(U', V") = p(U,V), so by the same argument as above, (U, V) must be the complete state pair

that results from applying the corresponding ¢- or r-transformation to (U’,V’). Since Z converts
(U,V) to (0,0), Z must also convert (U’,V’) to (0,0), as desired. Thus, p(U’, V') € Fy(Z). O

We now complete the proof that no interaction of 7 with F((Z) will produce p(X,Y) ¢ Fo(Z)
for complete state pair (X,Y)°.

Lemma 5.4. Let (Fo(Z),T) denote the subgroup of F;(Z) generated by Fo(Z) UT. Then, F N
(F0(2),T) = Fo(Z).

Proof. Consider a word @ € (Fy(Z),T) such that @ = f, where f is expressed in terms of x, y, and
z(so f € F). Then, of ! = 1, and note that ®f~! € F;(Z). Then, by Britton’s lemma (Corollary
4.3), since o f~! trivially consists of more than one character, we must have @ f~! contains either a
subword tl._lb,-ti or tic,-tl._l for some b;,c; € F7(Z), where i € T. Since f is in terms of x, y, and z,
the subword is necessarily contained in ®, so b;,c; € Fo(Z).

Now, by Lemma 5.3, we have tflbiti = yi(b;) € Fo(Z) or t,-citlfl = l[/l-*l(ci) € Fo(Z). Thus,
we can replace the subword by an element of Fy(Z), effectively removing the ¢ elements. Repeating
this process until all ¢ elements are removed, we have @ € Fy(Z), as desired. O]

We now prove the undecidability of the Magnus problem, and in fact, a specific case of the
Magnus problem that we use in Section 6.

Theorem 5.5. The Magnus problem is undecidable.

Proof. Assume MAGNUS is decidable by a TM M. We construct a TM M’ to decide HALT,., with
input (Z, w), where Z = (Q,X,T", 8, q0, Gaccepts Greject) -

First, we have M’ construct the presentation for F7.(Z), as given earlier in this section and as
based on the HNN extension in Section 4.1; denote this presentation by (F7(Z)). Then, we have M’
run M on ((F3(Z)),{z} UT, p(qo, ®)), where (qo, ®) € N?> when considered as numbers in base b.
If M accepts, then M’ accepts; otherwise, M’ rejects.

We now claim that M" accepts if and only if Z halts on input ® in pair (0,0).

If Z halts on input ® in pair (0,0), then this means that Z converts complete state pair (go, ®)
to (0,0). Then, we can convert p(go, ®) to p(0,0) using the corresponding isomorphisms ¢, and
¢, and as such, by a series of conjugations by 7. As such, we have

o, ' p(qo,)@, = p(0,0) = z for some @; € (T};;(Z),

Thus, we have p(qo, ®) = @z, ' € ({z} U T) 7:(z)- Thus, M accepts, so M" accepts, as desired.
Now, if M" accepts on input @, then this means that p(qo,®) € ({z} UT)z:(z). Note that
z = p(0,0) € Fo(Z), so we must have p(qo,®) € (Fo(Z) UT)x:(z). By Lemma 5.4, we have
p(qo, ®) € Fo(Z). Thus, by definition of Fy(Z), Z converts (go, ®) to (0,0). Thus, Z halts on input
o in pair (0,0), as desired.
Thus, M’ decides HALT,.. However, HALT > is undecidable by Lemma 3.3, so we have a
contradiction. Thus, MAGNUS is undecidable. O]

®Note that Higman [12] proved a generalized version of this result without the use of Britton’s lemma, based on
subgroups of HNN extensions. However, Britton’s lemma provides a simpler proof, which we use here.

16

Corollary 5.6. The Magnus problem on F7(Z) and subgroup generated by {z} UT is undecidable.

Proof. Denote this case of the Magnus problem by
MAGNUS£:) = {{U,V) | U,V € N? and p(U,V) is in the subgroup generated by {z} UT}.

In the proof of Theorem 5.5, we instead assume that MAGNUS Fi(2) 1s decidable, and run M on
input {(go, @), where go and @ are taken as elements of N when considered in base b. The rest of the
proof applies as written. 0

6. Word problem

We now prove the word problem from the Magnus problem. In particular, we use a group that was
first introduced by Boone [5] in his original proof of the word problem; we prove the undecidability
of the word problem on the HNN extension of 7 (Z) with stable letter k given by the identity
isomorphism

Y:iz—z,T —T,

from the subgroup of F7:(Z) generated by {z, T} to itself. Let us denote this group by K7.(Z), and
note that more explicitly, we have

Ki(Z) = Fi(Z)U(k |k 'zk =z and for all € T,k 'tk =1).
Theorem 6.1. The word problem is undecidable.

Proof. Assume WORD is decidable by a TM W. We construct a TM W' to decide MAGNUS Fi(2)
with input (U, V).

First, we have W’ construct the presentation for K3 (Z), as given earlier in this section and as
based on the HNN extension in Section 4.1; denote this presentation by (K;-(Z)). Then, we have
W' run W on ((Kx(Z)),kp(U,V)k~1p(U,V)~1). If W accepts, then W' accepts, and otherwise, W’
rejects.

We now claim that W’ accepts if and only if p(U,V) € (z,T) Fi(2)-

If p(U,V) € (z,T), then since k commutes with z and T, we have kp(U,V)k~'p(U,V)~! =
kk='p(U,V)p(U,V)~! = 1. Thus, W accepts, so W’ accepts, as desired.

If W’ accepts, then this means that kp(U,V)k~!p(U,V)~! = 1. By Britton’s lemma, applied to
the extension involving stable letter k, we have p(U,V) € (z,T).

Thus, W’ decides MAGNUS Fi(z)- However, MAGNUS Fi(2) is undecidable by Corollary 5.6,
which is a contradiction. Thus, WORD is undecidable. O]

Corollary 6.2. The word problem on K} .(Z) is undecidable.

Proof. Denote this case of the word problem by
WORDy: (7) = {{w) | w € KF(Z) and 0 = 1}.

In the proof of Theorem 6.1, we instead assume that WORD K5(Z) is decidable, and run W on input
(kp(U,V)k~1p(U,V)~1). The rest of the proof applies as written. O

17

7. Isomorphism problem

Now, using KC}-(Z), we can prove the undecidability of the isomorphism problem. The isomorphism
problem was first proven undecidable by Adian [2] and Rabin [24], but in fact, Adian and Rabin
(independently) proved stronger results regarding the Markov property, which we discuss in Section
8. Here, we give a proof that follows directly from the word problem, and in fact, this proof works
for any group with undecidable word problem such that every element # 1 in that group has infinite
order. This idea was first suggested by Novikov [22].

Theorem 7.1. The isomorphism problem is undecidable.

Proof. We first show that every element # 1 in K7 (Z) has infinite order. First, note that for any
group H and HNN extension #;, elements in # retain their order in ;. This is clear by Corollary
4.2, since we have an embedding H — H;. Moreover, ¢ has infinite order in H*¢; this is clear
because for any n € N, the normal form of #" is given by 1-7- ... -¢- 1, and by the contrapositive
of Britton’s lemma (Corollary 4.3), " # 1. Now, since K7(Z) was derived from successive HNN
extensions on the free group F = (x,y,z | —), where clearly every element # 1 has infinite order,
necessarily every element # 1 in K5.(Z) has infinite order.

Now, we assume that ISO is decidable by a TM 1. We construct a TM I’ to decide WORD K3(2)
with input (@).

First, we have I’ construct a presentation of XC}.(Z) as based on the HNN extension in Section
4.1. We rename the generators of K5.(Z) to be ay, ... ,a,, and then we have I’ add to its presentation
of K;(Z) to construct

Kor(Z)=KHZ)Ulky,... .k, | {k ' oki=a; |1 <i<p}).

Denote the presentation of Ky 7(Z) by (K r(Z)). Then, we have I run on ((K¢ 1(Z)), (x1,.- ., %p |
—)). If I accepts, then I’ accepts, and otherwise, I’ rejects.

We now claim that I’ accepts if and only if @ = 1 in C}.(Z).

If o= 1in K} (Z), then for all 1 <i < p, we have a; = 1 in K 7(Z). Thus, we are left with
Kor(Z) = (ki,...,k, | —), which is trivially isomorphic to (xi,...,x, | —). Thus, I accepts, so I’
accepts.

To show the other direction, we in fact show the contrapositive, namely that if @ # 1 in K}.(Z),
then I’ rejects. Since ® # 1 in IC5(Z), @ must be of infinite order. As such, for each a;, we have
an isomorphism ¢ : @ — a;, s0 IC 7(Z) can be constructed from K. (Z) through a series of HNN
extensions. Then, since by Corollary 4.2 we have an embedding K7.(Z) < KC 7(Z), and since by
Corollary 6.2 the word problem on K}(Z) is undecidable, we must have that the word problem
on K 7(Z) is undecidable (the reduction to do this is trivial). Now, we claim that ICg, 7(Z) is not
isomorphic to (xp,...,x, | —), since the word problem on (x1,...,x, | —) is decidable.

First, note that the word problem on free groups is decidable, because a TM needs only
repeatedly cancel subwords of the form x;x;” !, This results in a reduced form, and since on free
groups the reduced form is unique, the TM needs only check if the reduced form is exactly 1. If so,
the TM accepts, and if not, the TM rejects.

Now, note that if ICg, 7(Z) were isomorphic to (xp,...,x, | —), then we could construct a TM
to decide the word problem on K¢ 7(Z) with input (@). The TM first transforms Cg, 7(Z) to

18

(x1,...,xp | =) by non-deterministically’ applying Tietze transformations® until K 7(Z) has no
relations left. Since K¢ 7(Z) is isomorphic to (xi,...,x, | —), the TM would eventually guess
a correct sequence of operations that sends Ky 7(Z) to (xi,...,x, | —). While guessing these
operations, we have the TM also modify w based on modifications to ICQLT(Z), and once we have
transformed /Cy, 7(Z) into a free group, the TM applies the previous algorithm on deciding the word
problem for free groups to check if @ = 1. If so, the TM accepts, and otherwise, the TM rejects.
This is a contradiction, since the word problem on K 7(Z) is not decidable.

Thus, K 7(Z) is not isomorphic to (xi,...,x, | —), so we have I rejects. As such, I’ rejects.

Thus, I’ decides WORD KK3(2)- However, by Corollary 6.2, WORD,C;(Z) is undecidable, which
1s a contradiction. Thus, ISO is undecidable. O]
8. Markov property

The Markov property was first introduced by Markov [15, 16, 17] in reference to the same decid-
ability problem on semigroups. Adian [2] and Rabin [24] independently proved that questions on
finitely presented groups involving properties satisfying the Markov property are undecidable. This
includes isomorphic (which we proved in Section 7), abelian, finite, trivial, torsion-free, free, and
simple.

We begin by reiterating the definition of the Markov property.

Definition 8.1. Let P be any property of finitely presented groups that is preserved under isomor-
phism. P is a Markov property if

1. there is a finitely presented group with property P and

2. there is a finitely presented group that cannot be embedded into any finitely presented group
with property P.

We use Rabin’s [24] construction to prove the undecidability of properties satisfying the Markov
property. To achieve the first step of this construction, we need the following lemma.

Lemma 8.1. Every countable group H can be embedded into a group G generated by two elements
of infinite order. If H is finitely presented, then G is finitely presented.

Proof. Let ‘H consist of the elements A1, hy, Let F be the free product of H and (a,b), namely
‘H U (a,b). First, note that the set

{a,b" ab,b™%ab?,...b " ab",.. .}

"Non-deterministic Turing machines are slightly outside the scope of this paper, but in short, they are exactly
deterministic Turing machines except at any step in the computation, they can (finitely) branch and essentially “guess”
a step to take. If any of these branches accept the input, then the entire machine accepts the input. It is simple to show
that non-deterministic Turing machines have equivalent deterministic Turing machines, which we also omit for the
purposes of this paper.

8Tietze transformations are outside the scope of this paper, but in short, there are four operations, namely adding/re-
moving relations and adding/removing generators, such that given two isomorphic finitely presented groups, some finite
sequence of those operations will transform one group to the other. They were first introduced by Tietze [30] when he
formulated the isomorphism problem on finitely presented groups. Moreover, by having a non-deterministic Turing
machine repeatedly guess Tietze transformations, it is clear that the isomorphism problem is recognizable.

19

freely generates a subgroup of (a,b) (this follows by the Nielsen-Schreier Theorem”). Moreover,
{b,hya"'ba,hya>ba?,... hya "bd",...}

freely generates a subgroup of . This is clear because we can consider the projection of F onto
(a,b) givenby 7 : a v+ a,b+ b,c; > 1 for all i. Since the images {b,a"'ba,a >ba?,...} are free
generators, we must have {b,hja~'ba,hya=%ba?,...} are free generators as well.

Thus, we have an isomorphism given by v : a — b,b~'ab — hja 'ba. Let G be the HNN
extension of F with stable letter ¢ given by v. More concretely, we have

G=FUlt|t tar =b,r b7 ab't = hja~'bd’ for all i).

Thus, H is embedded into G by Corollary 4.2. Moreover, G is generated by a and ¢, which is clear by
inspection of the relations. Also by Corollary 4.2, we have a is of infinite order, and by the normal
form from the HNN extension, it is clear that 7 is of infinite order (this is also shown in the proof of
Theorem 7.1).

Finally, we claim that if { is finitely presented, then we can remove all relations ¢~ b~ ab’t =
hia~'ba’ where h; is not a generator in the presentation of #; this can be somewhat trivially shown,
and is formally true by the Tietze transformations.' Thus, we have G is finitely presented. 0

Now, we prove the Aidan-Rabin theorem, largely following Rabin’s [24] proof.

Theorem 8.2. Adian-Rabin theorem [2, 24]. Let P be a Markov property of finitely presented
groups. The question of whether a finitely presented group has property P is undecidable.

Proof. Let G, denote a finitely presented group with property P, and let G_ denote a finitely
presented group that cannot be embedded into any finitely presented group with property P. Let
H = K;(Z) (note that H can be any finitely presented group with undecidable word problem, for
the purposes of this proof).

For any @ € H, we make the following constructions. First, by Lemma 8.1, we can embed
G- UHU(x) into a group generated by two elements of infinite order, say U, generated by u; and
uy. Then, let J be the HNN extension of I/ with stable letters y; and y, given by the isomorphisms
VU u% and Yy @ up — u% respectively. Thus, we have

J=Uu <)’Ia)’2 | yl_ll/tlyl = u%7y2_1u2y2 = 1,[2>,

Then, let KC be the HNN extension of [with stable letter z given by the isomorphism y : y; —
y%,yz — y%. This gives us

K=JU({z|z yiz=y32" yz=3).

Now, let

Q={(rst|s rs=r’ 1ttt =5%).

9The Nielsen-Schreier Theorem states that every subgroup of a free group is free [20, 25]. The proof of this is
outside the scope of this paper.
10See footnote 8.

20

Note that if we let P = (r,s | s~'rs = r?), P is exactly the HNN extension of (r) with stable letter s
given by the isomorphism p : r > r>. Moreover, Q is exactly the HNN extension of P with stable
letter ¢ given by the isomorphism & : s — s2.
Finally, let
Dy =KUQU(—|r=z,t=|m,x])

(essentially, Dy, is the free product K * Q with the added relations r = z and t = [®,x]), and let
ga) == Da) U g+ .

This concludes the necessary constructions.

Assume MARKOVp is decidable by a TM M. We construct a TM M’ to decide WORD K3(2)>
with input (@).

First, we have M’ construct the presentation of &, as given previously; we denote this presenta-
tion by (E). Then, we have M’ run M on ((Ey,)), and if M accepts, then M’ accepts, and otherwise,
M’ rejects.

We now claim M’ accepts if and only if @ = 1 in H.

Case: First, we show that if @ # 1 in H, then M’ rejects.

We claim that {r,7} generates a free subgroup of Q. Let & be a nontrivial reduced word on r
and ¢, such that & = 1. By Britton’s lemma (Corollary 4.3) applied to Q, & must contain a subword
t~¢Bt€ where € = &1, and B € (s)p if € = 1, and B € (s?)p if € = —1. Note that as such, we have
B = s™ for some m # 0. Also, since « is a freely reduced word on r and ¢, we must have 8 = r" for
some n # 0 (if B contains 7 or r~!, then & contains a shorter subword of the form =B, and we
can repeat this process until f is of the desired form). Thus, we have s = r" = s"r~" = 1. But,
by Britton’s lemma (Corollary 4.3) applied to P, since we have a word that equals 1 without the
specified subwords, we have a contradiction. Thus, r and ¢ freely generate a subgroup of rank 2,
<r 1 > Q-

Now, since @ # 1, note that the commutator [@,x] = @~ xYox has infinite order in 4. We
claim that [@,x] and z generate a free subgroup of rank 2 of K; the proof of this is exactly the same
as the proof for r and ¢ in the previous paragraph. Note that we trivially have embeddings (r,7) <— Q
and ([0, x],z) — K for F = (r,t) = ((w,x],z), so we have the free product with amalgamation

D=K*r Q.

1

Note that by construction, we have Dy, = D. Note that as such, we have G_ is embedded into D,
and as such, into &g,. Thus, &, cannot have the property P, so M rejects. Thus, M’ rejects, as desired.

Case: Now, we show that if @ = 1 in H, then M’ accepts.

Since @ = 1, then by inspection, we have Dy = {1}. Thus, &, = G, so trivially, £, has
property P. Thus, M accepts, so M’ accepts, as desired.

Thus, we have M’ decides WORD K3(2)- However, this contradicts Corollary 6.2. Thus, MARKOV p
is undecidable. OJ

9. Acknowledgments

I would like to thank Professor Adam Levine, for his invaluable help and guidance in this work and
throughout the Knot Theory Junior Seminar. I would also like to thank all of my classmates in the
seminar, for their insightful presentations and constant support.

This paper represents my own work in accordance with university regulations. /s/ Jessica Shi.

21

References

(1]

[27]
(28]

(29]
(30]
(31]

(32]

S. Aanderaa and D. E. Cohen. Modular machines, the word problem for finitely presented groups and Collins’
theorem. In S. I. Adian, W. W. Boone, and G. Higman, editors, WORD PROBLEMS II, volume 95 of Studies in
Logic and the Foundations of Mathematics, pages 1-16. Elsevier, 1980.

S. I. Adian. Unsolvability of some algorithmic problems in the theory of groups. Tr. Mosk. Mat. Obs., 6:231-298,
1957.

] E. Artin. Theory of braids. Annals of Mathematics, 48(1):101-126, 1947.

W. W. Boone. Certain simple, unsolvable problems of group theory i-iv. Journal of Symbolic Logic, 22(4):372—
373, 1957.

W. W. Boone. The word problem. Annals of Mathematics, 70(2):207-265, 1959.

J. L. Britton. The word problem. Annals of Mathematics, 77(1):16-32, 1963.

A. Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2):345—
363, 1936.

A. Church. The Journal of Symbolic Logic, 3(1):45-46, 1938.

M. Dehn. Uber die Topologie des dreidimensional Raumes. Math. Ann., 69:137-168, 1910.

M. Dehn. Die beiden Kleeblattschlingen. Math. Ann., 75:402—413, 1914.

K. Godel. On Undecidable Propositions of Formal Mathematical Systems. In B. Meltzer, editor, Lecture

Notes Taken by Kleene and Rosser at the Institute for Advanced Study. Reprinted in Davis, M. (Ed.) 1965. The
Undecidable. New York: Raven, 1934.

G. Higman. Subgroups of finitely presented groups. Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 262(1311):455-475, 1961.

G. Higman, B. H. Neumann, and H. Neuman. Embedding theorems for groups. Journal of the London
Mathematical Society, s1-24(4):247-254, 1949.

W. Magnus. Das Identitdtsproblem fiir Gruppen mit einer definierenden Relation. Math. Ann., 106:295-307,
1932.
A. A. Markov. On certain unsolvable problems concerning matrices. Dokl. Akad. Sci. USSR, 57:539-542, 1947.

A. A. Markov. On the impossibility of certain algorithms in the theory of associative systems. Dokl. Akad. Sci.
USSR, 55:583-586, 1947.

A. A. Markov. On the impossibility of certain algorithms in the theory of associative systems II. Dokl. Akad. Sci.
USSR, 58:353-356, 1947.

A. A. Markov. Insolubility of the problem of homeomorphy. Proc. Internat. Congr. Math., pages 300-306, 1958.

M. L. Minsky. Recursive unsolvability of Post’s problem of “Tag” and other topics in theory of Turing machines.
Annals of Mathematics, 74(3):437-455, 1961.

J. Nielsen. Om Regning med ikke-kommutative Faktorer og dens Anvendelse i Gruppeteorien. Matematisk
Tidsskrift. B, pages 77-94, 1921.

P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. Steklov.,
4:3-143, 1955.

P. S. Novikov. Uber einige algorithmische probleme der gruppentheorie. Jber. Deutsch. Math. Verein., 61:88-92,
1958.

E. L. Post. Recursive unsolvability of a problem of Thue. The Journal of Symbolic Logic, 12(1):1-11, 1947.
M. O. Rabin. Recursive unsolvability of group theoretic problems. Annals of Mathematics, 67(1):172-194, 1958.

O. Schreier. Die untergruppen der freien gruppen. In Abhandlungen aus dem Mathematischen Seminar der
Universitdt Hamburg, volume 5, pages 161-183. Springer, 1927.

P. E. Schupp. Some reflections on hnn extensions. In M. F. Newman, editor, Proceedings of the Second
International Conference on the Theory of Groups: Australian National University, August 13-24, 1973, pages
611-632. Springer Berlin Heidelberg, Berlin, Heidelberg, 1974.

M. Sipser. Introduction to the Theory of Computation. Cengage Learning, Boston MA, 3rd edition, 2013.

J. Stillwell. The word problem and the isomorphism problem for groups. Bulletin of the American Mathematical
Society, 6(1):33-56, 1982.

J. St3illwell. Classical Topology and Combinatorial Group Theory. Springer-Verlag, New York NY, 2nd edition,
1993.

H. Tietze. Uber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Monatsh. f. Math. u. Phys.,
pages 1-118, 1908.

A. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London
Mathematical Society, s2-42(1):230-265, 1937.

F. Waldhausen. The word problem in fundamental groups of sufficiently large irreducible 3-manifolds. Annals of
Mathematics, 88(2):272-280, 1968.

22

	Introduction
	Context
	Outline

	Preliminaries and definitions
	Computational complexity definitions
	Combinatorial group theoretic definitions

	Z2-machines
	Construction of Z2-machines
	Construction of modified Turing machines
	Halting problem for Z2-machines

	HNN extension and Britton's lemma
	HNN extension
	Britton's lemma

	Magnus problem
	Word problem
	Isomorphism problem
	Markov property
	Acknowledgments

