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Abstract

3-coloring is a classically difficult problem, and as such, it is of interest to consider the

computational complexity of 3-coloring restricted to certain classes of graphs. Pt-free graphs

are of particular interest, and the problem of 3-coloring P8-free graphs remains open. One

way to prove that 3-coloring graph class G is polynomial is by showing that for all G ∈ G,

there exists a constant bounded dominating set in G; that is to say, G contains a dominating

set S such that |S| ≤ KG for constant KG .

In this paper, we prove that there exist constant bounded dominating sets in subclas-

ses of Pt-free graphs. Specifically, we prove that excepting certain reducible configurati-

ons which can be disregarded in the context of 3-coloring, there exist constant bounded

dominating sets in {P6, triangle}-free and {P7, triangle}-free graphs. We also provide a

semi-automatic proof for the latter case, due to the algorithmic nature of the proof.
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Chapter 1

Introduction

1.1 Context

For k > 0, a k-coloring of a graph G is a function c : V (G) → [k] such that c(u) 6= c(v)

for all edges (u, v) ∈ E(G). The problem of determining the smallest k such that a given

graph G admits a k-coloring is a classically difficult problem, and indeed, is one of Karp’s

NP-complete problems [13]. The problem remains difficult even if k is fixed; specifically,

determining whether a given graph G admits a k-coloring for fixed k ≥ 3 is NP-complete

[20]. This problem is known as the k-coloring problem.

As such, it is of interest to determine the classes of graphs in which the k-coloring

problem is polynomially solvable. We focus on classes of graphs that forbid certain induced

subgraphs. For a graph H, we say a graph G is H-free if H is not an induced subgraph

of G. More generally, for a set of graphs S, we say a graph G is S-free if no graph in S is

an induced subgraph of G. There are several results regarding the k-colorability of S-free

graphs.

Kamiński and Lozin [15] proved that for any k, g ≥ 3, the k-coloring problem on graphs

with no cycles of length ≤ g is NP-complete. Thus, for any k ≥ 3, the k-coloring problem

on H-free graphs for any graph H containing a cycle is NP-complete. Moreover, for any

k ≥ 3 and any forest H with a vertex of degree ≥ 3, the k-coloring problem on H-free

graphs is NP-complete [11, 14, 4]. Thus, the only remaining graphs of interest are graphs

in which all components are paths.

Note that it is simple to show that k-coloring Pt-free graphs for t ≤ 4 is polynomial

[19]. For t = 5, Hoàng et al. [10] proved that k-coloring P5-free graphs is polynomial for

all k. Huang [12] proved that 5-coloring P6-free graphs and 4-coloring P7-free graphs are

1
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both NP-complete. Chudnovsky et al. [6, 7] recently extended this to show that 4-coloring

P6-free graphs is polynomial. These cover all cases of k-coloring Pt-free graphs for k ≥ 4.

This thesis focuses more specifically on the case where k = 3. Randerath and Schier-

meyer [18] proved that 3-coloring P6-free graphs is polynomial, and Bonomo et al. [2] proved

that 3-coloring P7-free graphs is polynomial. The 3-colorability of P8-free graphs remains

an open problem.

1.2 Our work

One way to consider the 3-colorability of a graph class is via list coloring. For any graph

G and any function L : V (G)→ P(Z+) (where P(Z+) denotes the powerset of the positive

integers), a list coloring of (G,L) is a function c : V (G)→ ∪v∈V (G)L(v) such that c(u) 6= c(v)

for all edges (u, v) ∈ E(G) and c(v) ∈ L(v) for all v ∈ V (G). The problem of determining

if a pair (G,L) where |L(v)| ≤ k for all v ∈ V (G) admits a list coloring is known as the

list k-coloring problem. Edwards [9] proved that the list 2-coloring problem is polynomial,

through a reduction to 2-SAT.

Now, for any graph G, a dominating set is a set of vertices S ⊆ V (G) such that every

vertex in V (G) \S has a neighbor in S. Consider any graph class G with constant bounded

dominating sets; in other words, every G ∈ G has a dominating set S such that |S| ≤ KG ,

for some constant KG . In order to 3-color any G ∈ G, we can find said dominating set S

in polynomial time and consider all possibilities of 3-coloring the induced subgraph of G

on S. There are a constant number of such colorings, and for each possibility, the problem

of 3-coloring the remaining vertices in G reduces to a list 2-coloring problem on G \ S.1

We can solve each of these list 2-coloring problems in polynomial time, so the 3-coloring

problem on G is polynomial.

Thus, it is of interest to consider whether Pt-free graphs admit constant bounded domi-

nating sets. Bacsó and Tuza [1] showed that every connected P5-free graph has a dominating

clique or a dominating P3. Using solely this, it is not true that every P5-free graph admits a

constant bounded dominating set; however, we are considering P5-free graphs in the context

of 3-coloring, and any P5-free graph with a clique of size ≥ 4 is clearly not 3-colorable. As

such, in our algorithm to 3-color P5-free graphs, we can simply check for cliques of size ≥ 4,

and if there are none, there exists a constant bounded dominating set of size ≤ 3.

In this thesis, we will similarly consider constant bounded dominating sets for {P6,

1This is because for each v ∈ V (G) \S, v is adjacent to an already colored vertex in S. Every such v can
be colored at most 2 colors, which forms the list 2-coloring problem.
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triangle}-free and {P7, triangle}-free graphs, contingent on certain restrictions related to

3-coloring, which we call reducible configurations. We defer a full definition to Section 2.

1.3 Our results

We build upon Chudnovsky et al.’s [5] characterization of {P6, triangle}-free graphs to show

that excepting reducible configurations, {P6, triangle}-free graphs have constant bounded

dominating sets.

We also build upon Bonomo et al.’s [3] characterization of {P7, triangle}-free graphs

to show that excepting reducible configurations, {P7, triangle}-free graphs have constant

bounded dominating sets. The proofs for {P7, triangle}-free graphs are somewhat tedious

and algorithmic; we provide an additional semi-automatic proof for this case.

Note that by the process detailed in Section 1.2, these results lead directly to a polyno-

mial time algorithm for 3-coloring {P6, triangle}-free and {P7, triangle}-free graphs.

In Section 2, we introduce preliminary notations and definitions. In Section 3, we

prove our result for {P6, triangle}-free graphs, and in Section 4, we prove our result for

{P7, triangle}-free graphs.



Chapter 2

Preliminaries

For the purposes of this paper, every graph G is simple, that is to say, undirected, unlabeled,

without self-loops, and without multiple edges. We denote the vertex set of G by V (G), and

the edge set of G by E(G). For a set of vertices U ⊆ V (G), we denote the vertex-induced

subgraph of G on U by G[U ]. For a vertex v ∈ V (G), we define the neighborhood of v,

denoted by N(v), to be the set of vertices in V (G) \ {v} adjacent to v. Moreover, a stable

set is a set of vertices that are all pairwise non-adjacent.

Note that we are finding constant bounded dominating sets with respect to 3-coloring;

indeed, there exist graphs within these classes in general that have no constant bounded

dominating set. However, there are certain reducible configurations that can be simplified

out of any graph G without changing its 3-colorability, and it suffices to consider only graphs

without such configurations. The configurations we use here closely follow those introduced

by Chudnovsky [4], and notably, can be identified in polynomial time. Specifically, our

reducible configurations include dominating vertices, vertices with degree < 3, and nontrivial

homogeneous pairs of stable sets.

1. Dominating vertices: A dominating vertex is a vertex v ∈ V (G) such that there exists

u ∈ V (G) where N(u) ⊆ N(v).1 If G contains such a dominating vertex, then G is

3-colorable if and only if G \ {u} is 3-colorable (by coloring u the same color as v).

2. Vertices with degree < 3: If G contains a vertex v with degree < 3, then G is 3-

colorable if and only if G \ {v} is 3-colorable (by coloring v a color that is not the

color of any of its neighbors).

3. Nontrivial homogeneous pairs of stable sets: For any pair of disjoint, non-empty

1Necessarily, u and v are non-adjacent.

4



5

sets U, V ⊆ V (G), (U, V ) is a homogeneous pair if every vertex not in U ∪ V is

either complete or anticomplete to U , and either complete or anticomplete to V . A

homogeneous pair (U, V ) is nontrivial if there exists an edge between U and V , and

|U |+ |V | ≥ 3. If U and V are also stable, then (U, V ) is a homogeneous pair of stable

sets.

Consider a nontrivial homogeneous pair of stable sets (U, V ) in G, and let u ∈ U be

adjacent to v ∈ V . Then, G is 3-colorable if and only if G \ ((U \ {u}) ∪ (V \ {v})) is

3-colorable (by coloring all vertices in U \ {u} the same color as u, and all vertices in

V \ {v} the same color as v).

Note that in the proof of Theorem 4.1, we can relax the nontrivial homogeneous pair of

stable sets configuration; it suffices instead to exclude any graph G that is bipartite.2

Also, we define a twin to be a vertex v ∈ V (G) such that there exists u ∈ V (G) where

N(u) = N(v). By definition, a twin is a dominating vertex.

2Note that any bipartite graph G is trivially 3-colorable, and we can detect if any graph G is bipartite
in polynomial time.



Chapter 3

{P6, triangle}-free graphs

In this chapter, we prove that {P6, triangle}-free graphs have a constant bounded domina-

ting set, using Chudnovsky et al.’s [5] characterization of these graphs.

Theorem 3.1. If G is a connected {P6, triangle}-free graph with no reducible configurations,

then G has a constant bounded dominating set.

3.1 Setup

We begin by introducing some relevant terminology that is used in Chudnovsky et al.’s [5]

characterization.

The Clebsch graph, shown in Figure 3.1, is a {P6, triangle}-free graph obtained by taking

the five-dimensional cube graph and identifying all pairs of opposite vertices. A graph H

is Clebschian if it is contained within the Clebsch graph.

Figure 3.1: The Clebsch graph.

6
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v1 u1

v2 u2

v3 u3

w1

w2

w3

Figure 3.2: A climbable graph.

v1

v2
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v5

v6

v7

v8

Figure 3.3: The V8 graph.

We also define climbable graphs. Let Kn,n be a complete bipartite graph with bipartition

{v1, . . . , vn}, {u1, . . . , un}. We construct a graph Hn by taking Kn,n and subdividing each

edge (vi, ui) for all i; more precisely, we delete each edge (vi, ui) and add a vertex wi adjacent

to vi and ui. A graph H is climbable if it is isomorphic to an induced subgraph of Hn for

some n. An example of a climbable graph is shown in Figure 3.2.

A bipartite graph H with bipartition (U, V ) is an antisubmatching relative to (U, V )

if every vertex in U has at most one non-neighbor in V and vice versa. The V8 graph, as

shown in Figure 3.3, is a graph obtained by taking a cycle of length 8 and adding an edge

between all pairs of opposite vertices. More precisely, a V8 graph is a graph with vertices

{v1, . . . , v8} where for any i 6= j, (vi, vj) is an edge if and only if i− j = 1, 4, or 7 mod 8.

We use this to define a V8 expansion. Let H1,5 and H3,7 be antisubmatchings relative to

(V1, V5) and (V3, V7) respectively, each with at least one edge. Let H be a graph obtained

by taking the V8 graph and replacing (v1, v5) with (V1, V5) and (v3, v7) with (V3, V7). Also,

we may delete some vertices in {v2, v4, v6, v8}. Then, H is a V8 expansion.

Finally, for any homogeneous pair of stable sets (U, V ), (U, V ) is simplicial if every

vertex not in U ∪ V with a neighbor in U is adjacent to every vertex not in U ∪ V with a

neighbor in V .

We can now introduce a primary result from Chudnovsky et al. [5] that will serve as

the basis of our proof.

Lemma 3.2 (Chudnovsky et al. [5]). If G is a connected {P6, triangle}-free graph with no

twins, then either

1. G is Clebschian, climbable, or a V8 expansion, or

2. G admits a nontrivial simplicial homogeneous pair of stable sets.
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3.2 Proof of Theorem 3.1

We consider all of the possibilities of G given by Lemma 3.2. If G is Clebschian, then

trivially, the number of vertices in G is bounded by 16, so there exists a constant bounded

dominating set of size ≤ 16.

Consider the case where G is climbable. Thus, G is isomorphic to an induced subgraph of

Hn for some n, where Hn is constructed by taking Kn,n (with bipartition {v1, . . . , vn}, {u1,
. . . , un}) and subdividing each edge (vi, ui) for all i. Let wi denote the vertices added in

this subdivision; by definition, deg(wi) = 2, so if wi ∈ V (G), then deg(wi) ≤ 2, which is a

reducible configuration. As such, G is necessarily an induced subgraph of Kn,n. This means

that G has a dominating set of size ≤ 2, as desired.

Consider the case where G is a V8 expansion. We again use notation given in the

definition of a V8 expansion in Section 3.1, where G is constructed from a V8 graph with

vertices {v1, . . . , v8}, and where (v1, v5) and (v3, v7) are replaced with antisubmatchings

relative to (V1, V5) and (V3, V7) respectively. Note that by definition, V1, V3, V5, and V7 are

all nonempty.

For all i = 1, 3, 5, 7, let Di = Vi if |Vi| = 1, and otherwise, let Di = {xi, yi} for any

xi, yi ∈ Vi. For all i = 2, 4, 6, 8, let Di = {vi} if vi ∈ V (G), and otherwise, let Di = ∅. We

claim that D =
⋃

i∈[8]Di forms a constant bounded dominating set of G.

Note that it suffices to consider zi ∈ Vi such that zi /∈ Di for i = 1, 3, 5, 7. Without

loss of generality, consider z1 ∈ V1 where z1 /∈ D1. Note that if v2 ∈ V (G) or v8 ∈ V (G),

then z1 by definition has a neighbor in D. Thus, assume that v2, v8 /∈ V (G). If |V5| = 1,

say V5 = D5 = {x5}, then in order for G to be connected, z1 must be adjacent to x5, as

desired. Otherwise, if |V5| > 1, then D5 = {x5, y5} and z1 must be adjacent to at least one

of x5 and y5, since there exists an antisubmatching relative to (V1, V5). In all cases, z1 has

a neighbor in D. The arguments for i = 3, 5, 7 follow symmetrically. Thus, D is a constant

bounded dominating set of G.

Finally, consider the case where G admits a nontrivial simplicial homogeneous pair

(U, V ). This is precisely a reducible configuration, which contradicts our hypothesis.

Thus, in all cases, G has a constant bounded dominating set.



Chapter 4

{P7, triangle}-free graphs

In this chapter, we prove that {P7, triangle}-free graphs with no reducible configurations

have a constant bounded dominating set, using Bonomo et al.’s [3] characterization of these

graphs.

Theorem 4.1. If G is a connected {P7, triangle}-free graph with no reducible configurations,

then G has a constant bounded dominating set.

4.1 Setup

We begin with Bonomo et al.’s [3] characterization of {P7, triangle}-free graphs.1 Since G

is not bipartite, G must contain an odd cycle. The shortest induced odd cycle in G must

be either C5 or C7, since G is {P7, triangle}-free.

If G is C5-free, then V (G) = V1 ∪ . . . ∪ V7, where each Vi is nonempty and stable, and

Vi is complete to Vi+1.
2 Clearly, there exists a constant bounded dominating set of size 7,

formed by taking vi ∈ Vi for each i.

Thus, assume G contains an induced C5. We now define certain classes of vertices in

G. Let C be an induced C5, where C = {c1, . . . , c5}. We call C the base graph. Note that

all subscripts in the remainder of this section relate to C, and as such are taken modulo 5.

The neighborhood of C is given by two types of vertices (see Figure 4.1):

• clone vertices, which are vertices with neighbors ci−1 and ci+1 in C for some i, and

• leaf vertices, which are vertices with neighbor ci in C for some i.

1Note that in Bonomo et al.’s [3] characterization, it is not necessary for G to have no reducible configu-
rations.

2Where subscripts are taken modulo 7.

9
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ci

di

`i

Figure 4.1: A clone di and a leaf `i, both on index i.

For each i, let Di denote the set of clone vertices with neighbors ci−1 and ci+1, and let Li

denote the set of leaf vertices with neighbor ci. We denote by i the index of Di and Li.

Also, we call A =
⋃

iDi ∪ Li anchors, and we call G[A] the induced anchor graph.

We denote by E = V (G) \ (A ∪ C) the set of vertices in G which are neither anchors

nor in the base graph, and we call these vertices linkers. Note that E is anticomplete to C.

Moreover, the components of E are singletons or edges, and any edge component must be

anticomplete to Li. We call G[E] the induced linker graph.

This concludes Bonomo et al.’s [3] characterization. Now, assume for purposes of con-

tradiction that G has no constant bounded dominating set. As such, we must have a non-

constant set of linkers E′ with pairwise disjoint neighborhoods.3 Throughout this proof,

we will delete vertices from E′, although in such a way that E′ remains a non-constant size.

When we state properties of vertices in or relating to E′, we mean more precisely that we

can prune E′ such that E′ remains a non-constant size and the property holds.

Since the components of the induced linker graph are singletons and edges, and each

linker must have degree ≥ 3, each linker must be adjacent to at least 2 anchors. Note that

there are a constant number of types and indices that any given anchor can have. We can

use pigeonhole principle to delete vertices in E′ such that we are left with a non-constant

set of linkers, where each linker is adjacent to the same two types and indices of anchors

(see Figure 4.2).

Moreover, we can prune E′ such that a non-constant number of vertices remain and E′

is stable. This is clear because the components of E′ are singletons or edges, so we must

have a non-constant number of components in E′.

We now proceed with casework on the types and indices of these two anchors. We

3This follows from a result by Du and Wan [8], where since G is K4-free (by definition), γ(G) ≤ 11α2(G)−
5, where γ(G) denotes the domination number of G and α2(G) denotes the 2-independence number of G.
Since γ(G) is non-constant, α2(G) must be non-constant, and as such we have a non-constant set of vertices
in G with pairwise disjoint neighborhoods. Since anchors must eventually share neighbors, we have a non-
constant set of linkers in G with pairwise disjoint neighborhoods.
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ci

ci+2

d0i

d1i

`0i+2 `1i+2

e0 e1 . . .

Figure 4.2: For example, here we have reduced E′ to E′ = {e0, e1, . . .}, where each linker
er is adjacent to a clone on index i (dri ) and a leaf on index i + 2 (`ri+2). Note that each er

may be adjacent to other anchors and linkers as well.

introduce some notation to clarify this casework. Let E′ = {e0, e1, . . .} (in general, the

superscript refers to analogous copies, while the subscript refers to indices). For each

er ∈ E′, let ar and br denote the two anchors with the requisite types and indices as given

by the pigeonhole principle, so (er, ar), (e, br) ∈ E(G). Note that er may be adjacent to

other anchors or other linkers.

4.2 ar, br have different types or indices

First, consider the case where ar and br are anchors of different types or are anchors of

different indices. There are a few cases that can be immediately eliminated.

Property 1. For all r, if ar and br are both leaves, then they must be on non-adjacent

indices.

Proof. If ar and br are leaves on adjacent indices, say ci and ci+1 respectively, then ar, er,

br, ci+1, ci+2, ci+3, ci+4 forms a P7. Thus, ar and br must be on non-adjacent indices.

Property 2. For all r, ar and br do not share a neighbor in C.

Proof. If ar and br share a neighbor, say ci, then note that without loss of generality, ar

is also adjacent to cj , where i 6= j and where cj is non-adjacent to br. Then, we obtain a

P7 given by br, er, ar, cj , a
s, es, bs, where because G is triangle-free, ar, as is non-adjacent to

br, bs. As such, ar and br cannot share a neighbor in C.

By Properties 1 and 2, there exist only four possibilities for the types and indices of ar

and br (up to isomorphism; see Figure 4.3):

1. ar is a clone on index ci and br is a clone on index ci+1,
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ci
ci+1

ar

br
ci

ci+2

ar

br

ci

ci+2

ar

br

ci

ar

br

Figure 4.3: Possibilities for the types and indices of ar and br, up to isomorphism.

2. ar is a leaf on index ci and br is a leaf on index ci+2,

3. ar is a clone on index ci and br is a leaf on index ci+2, or

4. ar is a clone on index ci and br is a leaf on index ci.

Importantly, in possibilities 1, 2, and 3, there exists j such that ar, cj , cj+1, cj+2, b
r forms

an induced P5. We formalize this:

Property 3. For all r, either ar and br share the same index, or there exists j such that

ar, cj , cj+1, cj+2, b
r forms an induced P5.

Proof. This follows immediately from Properties 1 and 2.

Property 4. For all r 6= s, if ar and br do not share the same index, then ar is adjacent to

bs.

Proof. Assume for purposes of contradiction that ar is non-adjacent to bs. By Property 3,

there exists j such that ar, cj , cj+1, cj+2, b
r forms an induced P5. Then, er, ar, cj , cj+1,

cj+2, b
s, es forms a P7, which is a contradiction. Thus, ar is adjacent to bs.

Property 5. For all r, er is not part of an edge component in E.

Proof. If there exists a non-constant number of r such that er is a singleton, then we can

simply prune all er such that er is in an edge component from E′, and our property holds.

Thus, assume for purposes of contradiction that there exists a non-constant number of r

such that er is in an edge component, and prune all er such that er is a singleton from E′.

For each r, let er be adjacent to linker f r. Note that necessarily, since er cannot be

adjacent to any leaf vertices, by Property 2, ar must be a clone on index ci and br must be

a clone on index ci+1.

Now, for any r 6= s, note that f r is adjacent to as if and only if f r is adjacent to bs. For

example, if f r is adjacent to as but not bs, then ci+2, b
s, ci, ci−1, a

s, f r, er forms a P7. The

other case follows symmetrically.
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Moreover, note that if f r is non-adjacent as and fs is non-adjacent to ar, then f r, er, ar,

ci+1, a
s, es, fs forms a P7. Thus, for any r 6= s, at least one of (f r, as) and (fs, ar) is an

edge.

Now, fixing some r, by the pigeonhole principle, there exists distinct s, t such that either

(f r, as), (f r, at) ∈ E(G) or (f r, as), (f r, at) /∈ E(G). In the former case, note that f r, as, bt

forms a triangle (by Property 4), which is a contradiction. In the latter case, note that we

must have (fs, ar), (f t, ar) ∈ E(G). Now, if (f s, at) ∈ E(G), we again have that fs, ar, bt

forms a triangle. Thus, (f s, at) /∈ E(G), which means that (f t, as) ∈ E(G). We now have

that f t, ar, bs forms a triangle, which is a contradiction.

Thus, for any r, er must not be part of an edge component in E.

Since for any r, er is not part of an edge component in E, in order for deg(er) ≥ 3, er

must be adjacent to a third anchor, say dr. We can again use the pigeonhole principle to

ensure that all er in E′ are adjacent to a third anchor of the same type and index, and we

can repeat all of our previous arguments for ar and br on the pairs ar and dr, and br and

dr.

Property 6. For all r, er is adjacent to two anchors that are of the same type and are on

the same index. Importantly, these two anchors are of the same type and index across all

er.

Proof. By Properties 1 and 2, we see that there are precisely two cases in which neither of

the pairs in {(ar, dr), (br, dr)} consists of two anchors of the same type and index. These

are given by (up to isomorphism; see Figure 4.4):

1. ar is a leaf on index ci, b
r is a clone on index ci+2, and dr is a clone on index ci+3, or

2. ar is a leaf on index ci, b
r is a clone on index ci, and dr is a leaf on index ci+3.

The first case is impossible by Property 4 and since G is triangle-free (note that for dis-

tinct r, s, t, we have ar, bs, dt forms a triangle, which is a contradiction). In the second

ci+3

br

dr

ar ci

ci

br

ar

dr ci+3

Figure 4.4: Impossible cases of the types and indices of ar, br, and dr, up to isomorphism.
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case, we claim that for all r 6= s, ar is adjacent to bs. This is clear because otherwise,

bs, ci+1, ci+2, ci+3, d
s, ar, er forms a P7. Now, since G is triangle-free, we again receive a

contradiction (for the same reason as in the first case).

Thus, in all cases, at least one of the pairs in {(ar, dr), (br, dr)} consists of two anchors

of the same type and index.

By Property 6, it suffices to use the arguments in Section 4.3 to complete the proof.

4.3 ar, br have the same type and index

Consider the case where both anchors are of the same type and are on the same index.

Without loss of generality, let ar and br be adjacent to ci ∈ C.

ar dominates br (and vice versa)

Note that if ar and br are adjacent to no other vertices, then each ar is dominated by br.

Thus, we must have some vertex dra that is adjacent to ar but not to br.

We claim that each ar is adjacent to a distinct dra of this form; that is to say, dra 6= dsa

for all r 6= s. Note that if dra = dsa, then since dra is non-adjacent to bs, we have that

bs, es, as, dra, a
r, er, br forms a P7. Thus, dra 6= dsa.

Similarly, each br is dominated by ar, so we must have an analogous vertex drb that is

adjacent to br but not to ar. Note that drb 6= dsb for all r 6= s.

By the pigeonhole principle, we can delete vertices in E′ such that we are left with

a non-constant set of linkers, where the corresponding dra are either all er vertices or all

anchors of the same type and the same index. We repeat this process with drb .

We now note several properties of dra and drb .

Property 7. For all r 6= s, dra is adjacent to as if and only if dra is adjacent to bs. Similarly,

drb is adjacent to as if and only if drb is adjacent to bs.

Proof. This property holds because otherwise, we can discover an induced P7. For example,

if dra is adjacent to as but not bs, then bs, es, as, dra, a
r, er, br forms a P7. The other cases

follow analogously.

Property 8. For all r 6= s, dra is non-adjacent to es. Similarly, drb is non-adjacent to es.

Proof. Let Da denote the set of all dra for all r. Note that each dra can be adjacent to at most

one vertex in E′, since the vertices in E′ have pairwise disjoint neighborhoods, so there at

most |E′| edges between Da and E′ in G.
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Now, we can construct a new graph H where V (H) = {hr ∀ r} and E(H) = {(hr, hs) |
(dra, es) ∈ E(G)}. Note that necessarily, |E(H)| ≤ |E′|, so there exists a stable set of size

at least
∑

hr∈H(1 + deg(hr))
−1 ≥ |E′|/3. [21]4 Denote this stable set by SH , and for each

er ∈ E′, if hr /∈ SH , remove er from E′.

Note that we will still have a non-constant number of vertices in E′ remaining, since

|SH | ≥ |E′|/3. Moreover, we now have no edges between Da and E′ in G, since dra is by

definition non-adjacent to er. Thus, for any r 6= s, dra is non-adjacent to es. The other case

follows analogously.

Property 9. For all r 6= s, dra is non-adjacent to dsa. Similarly, dra is non-adjacent to dsb

and drb is non-adjacent to dsb.

Proof. This property holds because otherwise, there exists a P7. For example, if dra is

adjacent to dsa, then er, ar, dra, d
s
a, a

s, es, bs forms a P7. Note that dra is non-adjacent to as, bs

and dsa is non-adjacent to ar since G is triangle-free and by Property 7. Moreover, dra is

non-adjacent to es and dsa is non-adjacent to er by Property 8. The other cases follow

similarly.

Property 10. For all r, dra is non-adjacent to drb .

Proof. If there exists a non-constant number of r such that dra is non-adjacent to drb , then

we can simply prune all er such that dra is adjacent to drb from E′, and our property holds.

Thus, assume for purposes of contradiction that there exists a non-constant number of r

such that dra is adjacent to drb , and prune all er such that dra is non-adjacent to drb from E′.

Note that by Properties 8 and 9, for any r 6= s, it suffices to characterize the edges

between {dra, drb} and {as, bs}, and between {dsa, dsb} and {ar, br}. By Property 7, any edge

to ar and as from these sets defines the edges to br and bs, so it suffices to discuss only ar

and as here. We claim that without loss of generality, the only edges that exist between

these sets are either {(dra, as), (dsa, a
r)} ⊆ E(G) or {(dra, as), (dsb, a

r)} ⊆ E(G).

Note that if there are no edges between any of these sets, then drb , d
r
a, a

r, ci, a
s, dsa, d

s
b

forms a P7. Thus, without loss of generality we must have (dra, a
s) ∈ E(G). Moreover,

if dsa and dsb are non-adjacent to ar, then br, er, ar, dra, a
s, dsa, d

s
b forms a P7. Thus, either

(dsa, a
r) ∈ E(G) or (dsb, a

r) ∈ E(G). Note that no other edges between these sets can be

added to E(G), since otherwise we will have a triangle. We have shown our claim.

4Note that this follows from the arithmetic mean-harmonic mean (AM-HM) inequality, and since∑
hr∈H deg(hr) = 2 · |E′|.
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drb
br

dra ar
er

dsb
bs

dsa as
es

Figure 4.5: An induced subgraph of G depicting the edges relating to dra and drb , based
on the properties proven in Section 4.3, where r 6= s. Note that proven non-edges are not
drawn, and the dotted edges denote edges that may or may not exist for any r 6= s.

Now, consider any distinct r, s, t. We first claim that we cannot have the following

scenario: dra is either adjacent or non-adjacent to both as and at, and dsa is either adjacent

or non-adjacent to both ar and at. If we have the stated scenario, then there exists a P7;

for example, if dra is adjacent to both as and at, and dsa is adjacent to both ar and at, then

our P7 is given by er, br, dsa, b
t, dra, b

s, es. The other cases follow similarly.5

Thus, without loss of generality, dra must be adjacent to precisely one of as and at, and

dsa must be adjacent to precisely one of ar and at. There exists a P7 in any case; for example,

if dra is adjacent to as and dsa is adjacent to at, then br, er, ar, dra, a
s, dsa, a

t forms a P7. The

other cases follow similarly.6

This concludes all cases, so dra must be non-adjacent to drb .

Figure 4.5 depicts the edges and non-edges relating to dra and drb , based on the properties

proven in this section.

4.3.1 ci dominates er

If er is adjacent to no other vertices, then er is dominated by ci. Thus, there exists some

vertex dre that is adjacent to er but not ci. Note that necessarily, this vertex is distinct from

all of the vertices introduced thus far; for all r 6= s, since dsa and dsb are non-adjacent to er,

we have dre 6= dsa, d
s
b. Also, for all r 6= s, there must exist a distinct dre 6= dse, since er and es

have disjoint neighborhoods.

We once again use the pigeonhole principle to delete vertices in E′ such that we are left

5Note that by our earlier claim, if dra is non-adjacent to both as and at, then necessarily drb is adjacent
to both as and at, which we use to form the desired P7. This similarly applies to dsa.

6Again, if we fix that dra is adjacent to as without loss of generality, in the case where dsa is adjacent to
ar, we can use dsb instead of dsa and bs instead of as to obtain the necessary adjacencies, since dsb must be
adjacent to at.
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with a non-constant set of linkers where the corresponding dre are either all er vertices or

all anchors of the same type and index.

Now, let Gr = {dra, drb , dre, ar, br, er}. We would like to make two claims:

Property 11. For all r, the only edges within Gr are those given by definition, namely

(ar, er), (br, er), (dre, e
r), (dra, a

r), (drb , b
r) ∈ E(G).

Property 12. For all r 6= s, excepting potential edges between the sets {ar, br, dra, drb}
and {as, bs, dsa, dsb}, the only edges between Gr and Gs are (dre, a

s), (dre, b
s), (dse, a

r), (dse, b
r) ∈

E(G).

Note that since G is triangle-free and by Property 10, in order to show Property 11, it

suffices to show that (dra, d
r
e), (d

r
b , d

r
e) /∈ E(G). Moreover, we can show the following simple

property of edges between Gr and Gs.

Property 13. For all r 6= s, dre is non-adjacent to dse.

Proof. If dre is an anchor, then this follows trivially because G is triangle-free. Otherwise, if

dre is a linker, then this follows because the components of er vertices are either singletons

or edges. Thus, dre is non-adjacent to dse.

Because of this property and because G is triangle-free, in order to prove Property 12,

it suffices to show that (dre, a
s), (dre, b

s), (dse, a
r), (dse, b

r) ∈ E(G).

We now proceed with casework on dre, and in each case we will show that (dra, d
r
e),

(drb , d
r
e) /∈ E(G) and (dre, a

s), (dre, b
s), (dse, a

r), (dse, b
r) ∈ E(G).

dre is an anchor

First, assume that dre is an anchor. Note that since dre is an anchor, and by construction

is of a different type or index than ar and br, all of the arguments in Section 4.2 regarding

ar and br apply to dre and ar, and to dre and br. Thus, in order to prove Property 12, by

Property 4, it suffices to consider the case where ar, br, and dre are anchors on the same

index. We will use liberal casework on dra.

Property 14. For all r 6= s, if ar, br, and dre are anchors on the same index and if dra is a

linker, then (dre, a
s), (dre, b

s), (dse, a
r), (dse, b

r) ∈ E(G).

Proof. Assume for purposes of contradiction that the property does not hold. Consider any

xr ∈ {ar, br} and xs ∈ {as, bs}. If dre and dse are non-adjacent to xs and xr respectively,
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then dre, e
r, xr, ci, x

s, es, dse forms a P7 by Property 8. Thus, without loss of generality, dre is

adjacent to as and bs. We now proceed with casework on the type of ar.

First, consider the case where ar is a leaf. Then, ar and br are adjacent to only ci in

C, and dre is adjacent to ci−1 and ci+1. Note that for any r, we must have dra is adjacent to

dre; otherwise, ci+3, ci+2, ci+1, d
r
e, e

r, ar, dra forms a P7. Also, if dse is adjacent to ar but not

br, then ci+3, ci+2, ci+1, d
s
e, a

r, er, br forms a P7; a similar argument applies if dse is adjacent

to br but not ar, so necessarily, dse is non-adjacent to both ar and br. Finally, note that we

must have dsa is adjacent to ar, since otherwise, er, ar, ci, b
s, es, dse, d

s
a forms a P7. Now, we

have that ci+3, ci+2, ci+1, d
s
e, d

s
a, a

r, er forms a P7, which is a contradiction.

Consider the case where ar is a clone. Then, ar and br are adjacent to ci and ci+2,

and dre is adjacent to ci+1. For any r, we must have dra is non-adjacent to dre; otherwise,

ci+4, ci+3, ci+2, b
r, er, dre, d

r
a forms a P7. Similarly, dra must be non-adjacent to dse, since

otherwise, ci+4, ci+3, ci+2, a
r, dra, d

s
e, e

s forms a P7.

Now, if dse is non-adjacent ar, then we have dra, a
r, er, dre, ci+1, d

s
e, e

s forms a P7. Neces-

sarily, dse is adjacent to ar and non-adjacent to br.

We claim that dsa is non-adjacent to ar, br, since otherwise, bs, dre, ci+1, d
s
e, a

r, dsa, b
r forms

a P7. Now, br, er, ar, dse, e
s, as, dsa forms a P7, which is a contradiction.

In all cases, we reach a contradiction, so we must have (dre, a
s), (dre, b

s), (dse, a
r), (dse, b

r) ∈
E(G).

Property 15. For all r 6= s, if ar, br, and dre are anchors on the same index and if dra is an

anchor, then (dre, a
s), (dre, b

s), (dse, a
r), (dse, b

r) ∈ E(G).

Proof. Assume for purposes of contradiction that the property does not hold. As in the

proof of Property 14, consider any xr ∈ {ar, br} and xs ∈ {as, bs}. If dre and dse are non-

adjacent to xs and xr respectively, then dre, e
r, xr, ci, x

s, es, dse forms a P7 by Property 8.

Thus, without loss of generality, dre is adjacent to as and bs.

Let dra be adjacent to ck. Precisely one of (dra, a
s) and (dsa, a

r) must be an edge. If

neither are edges, then br, er, ar, dra, ck, d
s
a, a

s forms a P7. If both are edges, then es, bs,

dra, ck, d
s
a, b

r, er forms a P7.

We proceed with casework on dre.

First, consider the case where dre is also adjacent to ck. dse cannot be non-adjacent to

both ar and br, since otherwise, br, er, ar, dra, ck, d
s
e, e

s forms a P7. Moreover, dsa must be

adjacent to ar, since otherwise, br, er, ar, dse, ck, d
s
a, a

s (if dse is adjacent to ar; the case where

dse is adjacent to br follows similarly).
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If dse is adjacent to ar, then bs, es, dse, ck, d
s
a, b

r, er forms a P7. If dse is adjacent to br, then

as, es, dse, ck, d
r
a, a

r, er forms a P7. Thus, we receive a contradiction in either scenario.

Consider the case where dre is non-adjacent to ck. If ar is a leaf, then note that necessarily,

dra is a leaf on index ci+2. Then, if without loss of generality (dsa, a
r) is a non-edge, we have

dsa, ci+2, ci+3, ci+4, ci, a
r, er forms a P7, which is a contradiction. Thus, ar must be a clone.

We have ar is adjacent to ci and ci+2, and dre is adjacent to ci+1. Moreover, dra must be a

leaf on index ci+3.

We now claim that {dra, dsa} is complete to {dre, dse}. Otherwise, if for example dra is non-

adjacent to dre, then dra, ci+3, ci+4, ci, ci+1, d
r
e, e

r forms a P7. The other cases follow similarly.

Moreover, dse must be adjacent to br, since otherwise, er, br, ci, ci+1, d
s
e, d

r
a, ci+3 forms a P7.

Now, dsa is adjacent to ar, since otherwise, er, ar, ci, ci+1, d
s
e, d

s
a, ci+3 forms a P7. Finally,

we have dra, ci+3, d
s
a, b

r, ci, b
s, es forms a P7, which is a contradiction.

In all cases, we reach a contradiction, so we must have (dre, a
s), (dre, b

s), (dse, a
r), (dse, b

r) ∈
E(G).

Property 16. For all r 6= s, if dre is an anchor, then (dre, a
s), (dre, b

s), (dse, a
r), (dse, b

r) ∈ E(G).

Proof. By Property 4, it suffices to consider the case where ar, br, and dre are anchors on

the same index. By Properties 14 and 15, this property holds.

Property 17. For all r, if dre is an anchor, then dra is non-adjacent to dre. Symmetrically,

if dre is an anchor, then drb is non-adjacent to dre.

Proof. If there exists a non-constant number of r such that dre is non-adjacent to dra, then

we can simply prune all er such that dre is adjacent to dra from E′, and our property holds.

Thus, assume for purposes of contradiction that there exists a non-constant number of r

such that dre is adjacent to dra, and prune all er such that dre is non-adjacent to dra from E′.

Now, dra, d
r
e, b

s, ci, b
r, dsa, d

s
e forms a P7. This is a contradiction, so we must have dra is

adjacent to dre. The other case follows symmetrically.

dre is a linker

Let dre be a linker. Since (er, dre) forms an edge component in E, it must be anticomplete

to any leaf vertex. Thus, ar and br are clones; without loss of generality, let ar and br be

adjacent to ci and ci+2.

Property 18. For all r, if dre is a linker, then dra is a linker. Similarly, if dre is a linker, then

drb is a linker.
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Proof. Assume for purposes of contradiction that dra is an anchor. dra must be non-adjacent

to ci and ci+2, since G is triangle-free. Let dra be adjacent to cj , where j 6= i, i + 2.

If dra is non-adjacent to as and dsa is non-adjacent to ar, then br, er, ar, dra, cj , d
s
a, a

s forms

a P7 (by Properties 7 and 8). Without loss of generality, let dra be adjacent to as.

If dsa is adjacent to ar as well, then er, br, dsa, cj , d
r
a, b

s, es forms a P7 (by Properties 7

and 8). Thus, dsa is non-adjacent to ar.

We now proceed with casework on the type of dra.

Consider the case where dra is a clone. Without loss of generality, dra must be adja-

cent to ci+1 and ci+3. We now discover a P7, namely dsa, ci+3, d
r
a, b

s, ci, b
r, er, which is a

contradiction.

Consider the case where dra is a leaf. Necessarily, dra is non-adjacent to dse (where we

may have r = s), since (es, dse) forms an edge in E and as such cannot be adjacent to any

leaf. Consider any xr ∈ {ar, br} and xs ∈ {as, bs}. If dre and dse are non-adjacent to xs and

xr respectively, then dre, e
r, xr, ci, x

s, es, dse forms a P7. As such, we must have either dre is

adjacent to both as and bs, or dse is adjacent to both ar and br.

If dre is adjacent to both as and bs, then we obtain a P7 given by dsa, cj , d
r
a, b

s, dre, e
r, br,

which is a contradiction. If dse is adjacent to both ar and br, then we obtain a P7 given by

cj , d
s
a, a

s, es, dse, a
r, er, which is a contradiction.

In all cases, we obtain a contradiction. Thus, dra is not an anchor. The proof for drb

follows similarly.

Property 19. For all r, s, if dre is a linker, then dra is non-adjacent to dse. Similarly, if dre is

a linker, then drb is non-adjacent to dse.

Proof. Assume for purposes of contradiction that dra is adjacent to dse. Since the only

components in E′ are singletons or edges, and (dse, e
s) is an edge, dse must be non-adjacent

to any other linker. As such, dra is an anchor. This contradicts Property 18. Thus, for all

r, s, dra is non-adjacent to dse. The other case follows symmetrically.

Property 20. For all r 6= s, if dre is a linker, then (dre, a
s), (dre, b

s), (dse, a
r), (dse, b

r) ∈ E(G).

Proof. First, as in the proof of 18, we consider any xr ∈ {ar, br} and xs ∈ {as, bs}. If dre

and dse are non-adjacent to xs and xr respectively, then dre, e
r, xr, ci, x

s, es, dse forms a P7.

As such, without loss of generality, we must have dse is adjacent to both ar and br.

Now, assume for purposes of contradiction that dre is non-adjacent to as. If dsa is non-

adjacent to ar, then dre, e
r, ar, dse, e

s, as, dsa forms a P7. Thus, dsa is adjacent to ar. Moreover,

if dre is non-adjacent to bs, then dre, e
r, ar, dsa, a

s, es, bs forms a P7. Thus, dre is adjacent to
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bs. Finally, if dra is non-adjacent to as, then dra, a
r, er, dre, b

s, es, as forms a P7 (by Property

7). Thus, dra is adjacent to as (and bs, by Property 7).

Given these adjacencies, we note that dse, b
r, er, dre, b

s, dra, a
s forms a P7. This is a con-

tradiction, so we must have dre is adjacent to as. By a symmetric argument, dre is adjacent

to bs, as desired.

We have now shown our desired claims. Namely,

Property 11. For all r, the only edges within Gr are those given by definition, namely

(ar, er), (br, er), (dre, e
r), (dra, a

r), (drb , b
r) ∈ E(G).

Proof. This holds by Properties 10, 17, and 19.

Property 12. For all r 6= s, excepting potential edges between the sets {ar, br, dra, drb}
and {as, bs, dsa, dsb}, the only edges between Gr and Gs are (dre, a

s), (dre, b
s), (dse, a

r), (dse, b
r) ∈

E(G).

Proof. This holds by Properties 8, 9, 13, 16, and 20.

We make one further claim regarding the edges between Gr and Gs.

Property 21. For all r 6= s, dra is adjacent to as, bs if and only if drb is adjacent to as, bs.

Proof. Assume for purposes of contradiction that dra is adjacent to as, bs, but drb is non-

adjacent to as, bs. Then, dre, a
s, dra, a

r, dse, b
r, drb forms a P7, by Properties 11 and 12. Thus, if

dra is adjacent to as, bs, then drb is adjacent to as, bs. The other direction follows similarly.

Figure 4.6 depicts the edges and non-edges relating to dra, drb , and dre, based on the

properties proven in this section.

drb
br

dra ar

er
dre

dsb
bs

dsa as
es

dse

Figure 4.6: An induced subgraph of G depicting the edges relating to dra, drb , and dre, based
on the properties proven in Section 4.3.1, where r 6= s. Note that proven non-edges are not
drawn, and the dotted edges denote edges that may or may not exist for any r 6= s.
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4.3.2 Contradiction

We now use Properties 11 and 12 to obtain a contradiction.

Property 22. For all r, er is not adjacent to two anchors that are of the same type and

are on the same index, where these two anchors are of the same type and index across all

er.

Proof. Assume for purposes of contradiction that ar and br are anchors of the same type

and index.

For any r 6= s, consider Gr and Gs. By Properties 11 and 12, the only edges that we

have not defined within G[Gr ∪Gs] are those between dra, d
r
b and as, bs, and between dsa, d

s
b

and ar, br. By Property 7, it suffices to discuss only edges and non-edges to ar and as. By

Property 21, it suffices to discuss only edges and non-edges to dra and dsa.

Consider any distinct r, s, t. If dra is adjacent to as but not at, then we obtain a P7 given

by et, at, dse, a
r, dra, a

s, drb . Thus, dra is either adjacent to both as and at, or non-adjacent to

both as and at. This applies symmetrically to dsa and dta as well.

As such, without loss of generality, we must have either dra is non-adjacent to as, at and

dsa is non-adjacent to ar, at, or dra is adjacent to as, at and dsa is adjacent to ar, at. In the

former case, dra, a
r, dse, a

t, dre, a
s, dsa gives a P7, which is a contradiction. In the latter case,

er, br, dsa, a
t, dra, b

s, es gives a P7, which is a contradiction.

In all cases, we obtain a contradiction. Thus, ar and br cannot be anchors of the same

type and index.

Property 6 contradicts Property 22. Thus, G has a constant bounded dominating set.

4.4 Semi-automatic proof of Theorem 4.1

We also provide a semi-automatic proof of Theorem 4.1. Specifically, the proofs in Section

4.2 and 4.3 can be automated, minus the logic to derive the existence of dra, drb , and dre for

all r, and minus Property 8.

The semi-automatic proof works by taking the structures created in Section 4.1 and

considering all possible edges (in a somewhat optimized manner) to prove Properties 6 and

22. The contradiction then follows immediately.

The proofs are in file proof.py, with Property 6 in function prop 6 and Property 22

in function prop 22. The assumption of Property 8 appears in function set up nonedges.

All code can be found in Appendix A.



Chapter 5

Conclusion

In this work, we have studied the methodology of using constant bounded dominating sets

to show that the 3-coloring problem on certain graph classes is polynomial. We first showed

that excepting reducible configurations, {P6, triangle}-free graphs have constant bounded

dominating sets, based on Chudnovsky et al.’s [5] prior characterization. We also showed

that excepting reducible configurations, {P7, triangle}-free graphs have constant bounded

dominating sets, building upon Bonomo et al.’s [3] characterization, and we provided a

semi-automatic proof for this result.

In the future, we would like to extend our work to consider P6-free and P7-free graphs,

without the triangle-free restriction. Ultimately, we hope that this work provides insight

on potentially finding constant bounded dominating sets in P8-free graphs, to address the

open 3-coloring problem on P8-free graphs.
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Appendix A

Code for the semi-automatic proof

of Theorem 4.1

In this appendix, we present the code for the semi-automatic proof of Theorem 4.1, as

detailed in Section 4.4.

Note that the function powerset in the file proof utils.py is taken from the Python

3.6.5 Standard Library itertools documentation [17]. Also, the semi-automatic proof of

Property 6 requires a set of files, where each file contains a list of all labeled triangle-free

graphs in graph6 format of size n, for 1 ≤ n ≤ 4. The default format of these files is

k3freel/g [n].txt, although this can be specified in the code. We omit these files from

this thesis, although we note that nauty and Traces offer relatively simple graph generation

of this format [16].

"""

File: proof.py

Author: Jessica Shi

Date: 4/29/2018

This file contains the constructions to prove Properties 6 and 22, assuming

Property 8. The main proofs are found in prop_6() and prop_22() respectively.

"""

import proof_utils as utils

import functools

import itertools

24
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import networkx as nx

from sympy.utilities.iterables import multiset_permutations

def add_clone(i, node, g):

"""

Adds a clone node to graph g, with edges to ((i-1)%5) and ((i+1)%5).

Args:

i (int): index of clone to be added

node (node): clone to be added

g (Graph): graph

Returns:

Graph: graph with added clone

"""

g.add_node(node, type=("clone", i))

g.add_edges_from([(node, (i-1) % 5), (node, (i+1) % 5)])

return g

def add_leaf(i, node, g):

"""

Adds a leaf node to graph g, with an edge to (i % 5).

Args:

i (int): index of leaf to be added

node (node): leaf to be added

g (Graph): graph

Returns:

Graph: graph with added leaf

"""

g.add_node(node, type=("leaf", i))

g.add_edges_from([(node, i % 5)])

return g

def add_linker(node, g):

"""

Adds a linker node to graph g, with no edges.
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Args:

node (node): linker to be added

g (Graph): graph

Returns:

Graph: graph with added linker

"""

g.add_node(node, type="linker")

return g

def set_up_nonedges(num_rep, list_clones, list_linkers, list_d_clones,

list_d_linkers):

"""

Sets up the non-edges for the proof of Property 22, in prop_22. Uses

Property 8 to define certain non-edges.

Args:

num_rep (int): number of repetitions

list_clones (list(nodes)): list of a^r, b^r clones

list_linkers (list(nodes)): list of e^r linkers in E’

list_d_clones (list(nodes)): list of d_a^r, d_b^r

list_d_linkers (list(nodes)): list of d_e^r

Returns:

set(tuple(nodes)): set of specified non-edges

"""

# Set up non-edges

# This follows from the definitions of d_a^r, d_b^r

nonedges_set = set([(("da",i),("b",i)) for i in range(num_rep)] +

[(("db",i),("a",i)) for i in range(num_rep)])

# This is because edges to C are well-defined

nonedges_set.update(itertools.product(list_d_clones, range(5)))

nonedges_set.update(itertools.product(list_d_linkers, range(5)))

nonedges_set.update(itertools.product(list_linkers, range(5)))

nonedges_set.update(itertools.product(list_clones, range(5)))

# This is because all vertices in E’ have pairwise disjoint neighborhoods

nonedges_set.update(itertools.product(list_d_linkers, list_linkers))



27

nonedges_set.update(itertools.product(list_clones, list_linkers))

# This is by construction of E’

nonedges_set.update(itertools.combinations(list_linkers, 2))

# This is by definition of C

nonedges_set.update(itertools.combinations(range(5), 2))

# This is because G is triangle-free

nonedges_set.update(itertools.combinations(list_clones, 2))

# This follows from Property 8

nonedges_set.update(itertools.product(list_d_clones, list_linkers))

# Add the opposite ordering of tuples to the set, for ease of lookup

nonedges_set_opp = [nonedge[::-1] for nonedge in nonedges_set]

nonedges_set.update(nonedges_set_opp)

return nonedges_set

def prop_22():

"""

Proves Property 22, given Property 8. Tests (in an optimized, recursive

manner) all possible edges given that the linkers in E’ are adjacent

to two anchors of the same type and index and that there exist

d_a^r, d_b^r, and d_e^r for each repetition r to fix dominating vertices.

Shows that in all scenarios, there exists either an induced triangle

or an induced P_7, so as such, it is not possible for the linkers in E’

to be adjacent to two anchors of the same type and index.

"""

isg_lst = [nx.complete_graph(3), nx.path_graph(7)]

g_base = nx.cycle_graph(5)

num_rep = 3

# Set up clones, linkers, and vertices relating to dominating vertices

list_clones = ([("a",i) for i in range(num_rep)] +

[("b",i) for i in range(num_rep)])

list_linkers = [("e",i) for i in range(num_rep)]

list_d_clones = ([("da",i) for i in range(num_rep)] +
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[("db",i) for i in range(num_rep)])

list_d_linkers = [("de",i) for i in range(num_rep)]

g_base.add_nodes_from(list_linkers)

nonedges_set = set_up_nonedges(num_rep, list_clones, list_linkers,

list_d_clones, list_d_linkers)

# Consider all possibilities for anchors, d_a^r, d_b^r, and d_e^r

anchor_types = [functools.partial(add_clone, 0),

functools.partial(add_leaf, 0)]

d_func_lst_c = [add_linker]

d_func_lst_l = [add_linker]

for i in range(5):

if i != 0:

d_func_lst_c.append(functools.partial(add_clone, i))

d_func_lst_l.append(functools.partial(add_leaf, i))

d_func_lst_c.append(functools.partial(add_leaf, i))

d_func_lst_l.append(functools.partial(add_clone, i))

for anchor_func, d_func_lst in zip(anchor_types,

[d_func_lst_c, d_func_lst_l]):

for d_func_tup in itertools.combinations_with_replacement(d_func_lst, 3):

for (d_a_func, d_b_func, d_e_func) in multiset_permutations(d_func_tup):

g = g_base.copy()

# Add anchors, d_a^r, d_b^r, d_e^r

for i in range(num_rep):

g = anchor_func(("a",i), g)

g = anchor_func(("b",i), g)

g = d_a_func(("da",i), g)

g = d_b_func(("db",i), g)

g = d_e_func(("de",i), g)

g.add_edges_from([(("a",i),("e",i)),(("b",i),("e",i)),

(("a",i),("da",i)), (("b",i),("db",i))])

g.add_edges_from(zip(list_d_linkers, list_linkers))

# Check all possibilities of unspecified edges, and print

# any graphs that produce a graph without a triangle or a P7

is_all_contra = utils.is_all_contra(g, nonedges_set, isg_lst)



29

if not is_all_contra:

print g.nodes(data="type")

def prop_6():

"""

Proves Property 6. Tests all combinations of the types and indices of

anchors a^r and b^r (and d^r or a second linker) adjacent to the linkers

in E’, and shows that the only allowable combinations are those in which

at least two of {a^r, b^r, d^r} have the same type and index.

Note that this proof is incomplete in that in the case where e^r is

adjacent to three anchors, there are two situations in which all of

{a^r, b^r, d^r} have different types and indices. These situations

disappear if another repetition is added (only 2 repetitions are tested

for this case); however, this does significantly increase the runtime.

"""

anchor_func_lst = []

for i in range(5):

anchor_func_lst.append(functools.partial(add_clone, i))

anchor_func_lst.append(functools.partial(add_leaf, i))

base_g = nx.cycle_graph(5)

isg_lst = [nx.complete_graph(3), nx.path_graph(7)]

# Generate and check initial graph, with 2 repetitions and 2 anchors

# adjacent to each linker

fail_lst, anchor_edges_dict = utils.check_base_anchors(

base_g, anchor_func_lst, 2, isg_lst, 2

)

# Consider the case where 3 anchors are adjacent to each linker

s_fail_lst = utils.check_add_anchor(

fail_lst, anchor_func_lst, 2, isg_lst, 2, anchor_edges_dict,

update_dict=False

)[0]

# Output the cases in which it is possible for each linker in E’

# to be attached to 3 anchors

print "Case: 3 anchors: "

for g in utils.only_isomorphic(s_fail_lst):
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print (g[0].nodes(data="type"))

print (g[0].edges())

# Consider the case where each linker is adjacent to another linker

fail_lst, anchor_edges_dict = utils.check_add_linkers(

fail_lst, anchor_func_lst, isg_lst, range(2)

)

# Add another repetition, and the linkers for that repetition

fail_lst = utils.check_add_rep(

utils.only_isomorphic(fail_lst), anchor_func_lst, 2, isg_lst,

2, anchor_edges_dict, update_dict=False

)[0]

fail_lst = utils.check_add_linkers(

utils.only_isomorphic(fail_lst), anchor_func_lst, isg_lst,

[2], update_dict=False)[0]

# Output the cases in which it is possible for each linker in E’

# to be attached to 2 anchors and an additional linker

print "Case: 2 anchors, 1 linker: "

for g in utils.only_isomorphic(fail_lst):

print (g[0].nodes(data="type"))

print (g[0].edges())
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"""

File: proof_utils.py

Author: Jessica Shi

Date: 4/29/2018

This file contains the functions to construct and check possible edges

in graphs with anchor and linker nodes, attached to a base graph.

While they are heavily tailored to somewhat optimally proving Properties

6 and 22, they can be used for any structure that involves a base graph

and functions to construct anchor nodes adjacent to that base graph.

"""

import copy

import itertools

import networkx as nx

import os

from operator import itemgetter

from networkx.algorithms.isomorphism import is_isomorphic

from sympy.utilities.iterables import multiset_permutations

def find_induced_subgraph(g, isg):

"""

Checks if graph isg is an induced subgraph of graph g, and

if so, returns one such subgraph in g.

Args:

g (Graph): graph to be checked

isg (Graph): induced subgraph

Returns:

Graph: induced subgraph of g if isg is an induced subgraph of g,

None otherwise

"""

nodes = list(g)

for set_isg in itertools.combinations(nodes, len(isg)):

if is_isomorphic(nx.subgraph(g, set_isg), isg):

return nx.subgraph(g, set_isg)

return None
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def find_induced_subgraphs(g, isg_lst):

"""

Checks if any graph in isg_lst is an induced subgraph of graph g, and

if so, returns one such subgraph in g.

Args:

g (Graph): graph to be checked

isg_lst (list(Graph)): list of induced subgraphs

Returns:

Graph: induced subgraph of g if a graph in isg_lst is an induced subgraph

of g, None otherwise

"""

for isg in isg_lst:

find_isg = find_induced_subgraph(g, isg)

if find_isg is not None:

return find_isg

return None

def is_all_contra(g, nonedges_set, isg_lst):

"""

Recusively checks all unspecified edges in graph g (where specified

edges are given by g, and specified non-edges are given by nonedges_set),

and determines if all of these variations of g have an induced subgraph

in isg_lst or an induced K_4. If so, returns true, and otherwise,

returns false.

Args:

g (Graph): graph to be checked

nonedges_set (set(tuple(nodes))): set of specified non-edges in g

isg_lst (list(Graph)): list of induced subgraphs

Returns:

bool: True if all possibilities of g have an induced subgraph in

isg_lst or an induced K_4, False otherwise

"""

isg = find_induced_subgraphs(g, isg_lst + [nx.complete_graph(4)])

if isg is None:



33

return False

is_contra = True

for nonedge in nx.non_edges(isg):

if nonedge not in nonedges_set:

nonedges_set.update([nonedge, nonedge[::-1]])

g_new = g.copy()

g_new.add_edge(*nonedge)

is_contra = is_contra and is_all_contra(g_new, nonedges_set, isg_lst)

if not is_contra:

return is_contra

return is_contra

def is_induced_subgraph(g, isg):

"""

Checks if graph isg is an induced subgraph of graph g.

Args:

g (Graph): graph to be checked

isg (Graph): induced subgraph

Returns:

bool: True if isg is an induced subgraph of g, False

otherwise

"""

nodes = list(g)

for set_isg in itertools.combinations(nodes, len(isg)):

if is_isomorphic(nx.subgraph(g, set_isg), isg):

return True

return False

def is_induced_subgraphs(g, isg_lst):

"""

Checks if any graphs in isg_lst are induced subgraphs of graph g.

Args:

g (Graph): graph to be checked

isg_lst (list(Graph)): list of induced subgraphs

Returns:
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bool: True if any graph in isg_lst is an induced subgraph of g,

False otherwise

"""

for isg in isg_lst:

if is_induced_subgraph(g, isg):

return True

return False

def is_dominated_vert(g):

"""

Checks if there is a dominating vertex in graph g, and if so, returns

true along with a dominating vertex. Otherwise, returns false.

Args:

g (Graph): graph to be checked

Returns:

(bool, tuple): True along with a pair consisting of a dominating vertex

and a vertex it dominates, if there is a dominating vertex in g;

(False, None) otherwise

"""

nodes = list(g)

for pair in itertools.combinations(nodes, 2):

first = set(g.neighbors(pair[0]))

second = set(g.neighbors(pair[1]))

if first.issubset(second):

return (True, pair)

elif second.issubset(first):

return (True, pair[::-1])

return (False, None)

def add_anchors(g, linker, anchor_funcs, rep_idx, unique_idxs):

"""

Adds to graph g the anchors given in anchor_funcs, each with an edge

to linker.

Each added anchor has the form (rep_idx, anchor_idx, unique_idx),

where anchor_idx is given by anchor_funcs and unique_idx is given by

unique_idxs (in order).
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Args:

g (Graph): graph to be modified

linker (node): node in g (that represents a linker)

anchor_funcs (list((int, function))):

anchors to be added; the int represents the index associated with

the type of anchor, and the function takes as input a node and a graph,

and adds the node to the graph as an anchor

rep_idx (int): repetition index

unique_idxs (list(int)):

list of unique indices to distinguish between anchors added to the

same repetition of the same type; must be the same length as

anchor_funcs

Returns:

Graph: graph with the added anchors

list(node): list of the added anchors

"""

assert len(anchor_funcs) == len(unique_idxs)

anchors = []

for ((anchor_idx, anchor_func), unique_idx) in zip(anchor_funcs,

unique_idxs):

anchors.append((rep_idx, anchor_idx, unique_idx))

g = anchor_func(anchors[-1], g)

g.add_edge(linker, anchors[-1])

return (g, anchors)

def handle_failures(g, isg_lst, fail_lst,

anchor_set=None,

subg=None,

anchor_edges_dict=None):

"""

Checks if graph g has an induced subgraph in isg_lst or an induced K_4. If

g does have such an induced subgraph, adds g to fail_lst and updates

anchor_edges_dict with an entry with key anchor_set and value subg if

anchor_edges_dict is given.

Args:

g (Graph): graph to be checked
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isg_lst (list(Graph)): list of induced subgraphs

fail_lst (list(Graph)): list to add g to if g has one of the specified

induced subgraphs

anchor_set (tuple(int)):

tuple of sorted indices that represent the types of anchors used to

construct g

subg (Graph): a subgraph of g that encapsulates the edges

between the anchors

anchor_edges_dict (dict(tuple(int),Graph)):

a dictionary that maps tuples of sorted anchor type indices to

subgraphs of g that encapsulate the edges between anchors

Returns:

None

"""

if (not is_induced_subgraphs(g,

isg_lst + [nx.complete_graph(4)])):

fail_lst.append(g)

if anchor_edges_dict is not None:

if anchor_set not in anchor_edges_dict:

anchor_edges_dict[anchor_set] = []

anchor_edges_dict[anchor_set].append(subg)

def check_all_edges(g, subg, isg_lst, subg_fp, anchor_set=None,

anchor_edges_dict=None):

"""

Runs through all possibilities of edges between the vertices in subg of

graph g, where the possibilities are stored as graphs in graph6 format in

folder subg_fp.

Checks if g has an induced subgraph in isg_lst or an induced K_4, and

updates anchor_edges_dict (if given) if g has such an induced subgraph.

Args:

g (Graph): graph to be checked

subg (list(node)): list of nodes in g to try all

possible edges of

isg_lst (list(Graph)): list of induced subgraphs

subg_fp (str): name of folder containing graphs in graph6 format
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that represent the possible edges in subg (importantly, not up to

isomorphism; graphs are expected to be labeled); graphs are expected

to be stored in files labeled "g_[num].txt", where num is the number of

edges in the graphs in that file

anchor_set (tuple(int)):

tuple of sorted indices that represent the types of anchors used to

construct g

anchor_edges_dict (dict(tuple(int),Graph)):

a dictionary that maps tuples of sorted anchor type indices to subgraphs

of g that encapsulate the edges between anchors

Return:

list(Graph): list of graphs that have one of the specified induced

subgraphs, considering all possible edges among subg

"""

fail_lst = []

if len(subg)==0:

return [g]

with open(subg_fp + "/g_" + str(len(subg)) + ".txt", "r") as subg_f:

for subg_g6 in subg_f:

subg_edges = nx.parse_graph6(subg_g6.rstrip("\n"))

# Relabel subgraph given by subg_fp to subgraph in g

g_mod = nx.compose(

nx.relabel_nodes(subg_edges,

dict(zip(sorted(subg_edges.nodes()), subg))), g

)

handle_failures(g_mod, isg_lst, fail_lst,

anchor_set=anchor_set,

subg=g_mod.subgraph(subg),

anchor_edges_dict=anchor_edges_dict)

return fail_lst

def check_base_anchors(base_graph, anchor_func_lst, num_anchors,

isg_lst, num_rep, anchor_edges_fp="k3freel",

update_dict=True):

"""

Runs through all possibilities of adding num_anchors anchors from

anchor_func_lst to the graph base_graph, with num_rep repetitions.
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Considers all possible edges between anchors as given in graph6 format in

the folder anchor_edges_fp. Checks if any of these graphs has an induced

subgraph in isg_lst or an induced K_4, and returns the graphs that have no

such induced subgraphs.

Also, if update_dict is true, returns a dictionary mapping all combinations

of anchors to allowable edges between those anchors.

Args:

base_graph (Graph): initial graph

anchor_func_lst (list(function)):

list of functions that take as input an anchor node and a graph, and

add that node to the graph as an anchor

num_anchors (int): number of anchors to be added on each repetition

isg_lst (list(Graph)): list of induced subgraphs

num_rep (int): number of repetitions

anchor_edges_fp (str): folder containing all possible edges between

anchors in graph6 format

update_dict (bool): indicates whether to keep a dictionary mapping

tuples of anchor type indices to allowable edges between those anchors

Returns:

(list(Graph,list(node),list(node),tuple(int))):

list of graphs that have none of the indicated induced subgraphs,

with corresponding anchors, linkers, and anchor type indices

(dict(tuple(int),Graph)): dictionary mapping tuples of anchor

type indices to allowable edges between those anchors; None if

update_dict is false

"""

fail_lst = []

anchor_edges_dict = {} if update_dict else None

# Consider all permutations of anchors with replacement

anchor_func_combs = itertools.combinations_with_replacement(

enumerate(anchor_func_lst), num_anchors

)

for anchor_func_comb in anchor_func_combs:

for anchor_funcs in multiset_permutations(anchor_func_comb):

anchor_funcs = sorted(list(anchor_funcs), key=itemgetter(0))

anchor_set = tuple(sorted(zip(*anchor_funcs)[0]))
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g = base_graph.copy()

anchors = []

linkers = []

# In each repetition, add a linker and the corresponding anchors

for rep_idx in range(num_rep):

linkers.append((rep_idx, 0))

g.add_node(linkers[-1])

(g, new_anchors) = add_anchors(

g, linkers[-1], anchor_funcs, rep_idx, range(num_anchors)

)

anchors.append(new_anchors)

# Consider all edges between anchors and check for failure

fail_lst += zip(

check_all_edges(g, list(itertools.chain(*anchors)),

isg_lst, anchor_edges_fp,

anchor_set=anchor_set,

anchor_edges_dict=anchor_edges_dict),

itertools.repeat(anchors),

itertools.repeat(linkers),

itertools.repeat(anchor_set)

)

fail_lst = fail_lst if update_dict else only_isomorphic(fail_lst)

return fail_lst, anchor_edges_dict

def check_add_reps(g_spec_lst, anchor_func_lst, num_anchors, isg_lst,

rep_idxs, anchor_edges_dict, update_dict=True):

"""

See check_add_rep.

Adds multiple repetitions to each graph in g_spec_lst, as in check_add_rep.

Args:

g_spec_lst (list(Graph,list(node),list(node),tuple(int))):

list of graphs with corresponding anchors, linkers, and anchor type

indices (in order)

anchor_func_lst (list(function)):

list of functions that take as input an anchor node and a graph, and

add that node to the graph as an anchor

num_anchors (int): number of anchors to be added on each repetition
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isg_lst (list(Graph)): list of induced subgraphs

rep_idxs (iterable(int)): indices of repetitions to be added

anchor_edges_dict (dict(tuple(int),Graph)):

dictionary mapping tuples of anchor type indices to allowable edges

between those anchors; the number and repetitions of these anchors

must match those in g_spec_lst

update_dict (bool): indicates whether to keep an updated

dictionary mapping tuples of anchor type indices to allowable edges

between those anchors, considering the new repetitions

Returns:

(list(Graph,list(node),list(node),tuple(int))):

list of graphs that have none of the indicated induced subgraphs,

with corresponding anchors, linkers, and anchor type indices

(dict(tuple(int),Graph)): dictionary mapping tuples of anchor

type indices to allowable edges between those anchors, considering

the new repetitions; None if update_dict is false

"""

for rep_idx in rep_idxs:

g_spec_lst, anchor_edges_dict = check_add_rep(

g_spec_lst, anchor_func_lst, num_anchors, isg_lst, rep_idx,

anchor_edges_dict,

update_dict=True if rep_idx != list(rep_idxs)[-1] else update_dict

)

return g_spec_lst, anchor_edges_dict

def check_add_rep(g_spec_lst, anchor_func_lst, num_anchors, isg_lst,

rep_idx, anchor_edges_dict, update_dict=True):

"""

Given a list of graphs with their corresponding anchors and linkers

(in g_spec_lst), adds another repetition to each graph; that is to

say, adds another linker to each graph adjacent to anchors of the same

type as those used to construct previous anchors.

Considers all possible edges between the newly added anchors and the

previous anchors, using a dictionary of allowable edges to reduce

possibilities.

Returns all graphs that have neither an induced subgraph in isg_lst or an
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induced K_4.

If update_dict is true, also returns a dictionary mapping all combinations

of anchors to allowable edges between those anchors, considering the new

repetition.

Args:

g_spec_lst (list(Graph,list(node),list(node),tuple(int))):

list of graphs with corresponding anchors, linkers, and

anchor type indices (in order)

anchor_func_lst (list(function)):

list of functions that take as input an anchor node and a graph,

and add that node to the graph as an anchor

num_anchors (int): number of anchors to be added on each repetition

isg_lst (list(Graph)): list of induced subgraphs

rep_idx (int): index of repetition to be added

anchor_edges_dict (dict(tuple(int),Graph)):

dictionary mapping tuples of anchor type indices to allowable

edges between those anchors; the number and repetitions of

these anchors must match those in g_spec_lst

update_dict (bool): indicates whether to keep an updated dictionary

mapping tuples of anchor type indices to allowable edges between

those anchors, considering the new repetitions

Returns:

(list(Graph,list(node),list(node),tuple(int))):

list of graphs that have none of the indicated induced subgraphs,

with corresponding anchors, linkers, and anchor type indices

(dict(tuple(int),Graph)): dictionary mapping tuples of anchor

type indices to allowable edges between those anchors, considering

the new repetitions; None if update_dict is false

"""

fail_lst = []

anchor_edges_dict_new = {} if update_dict else None

for (g, anchors, linkers, anchor_set) in g_spec_lst:

if anchor_set not in anchor_edges_dict:

continue

fail_g_lst = []

anchor_funcs = [(anchor_set_idx, anchor_func_lst[anchor_set_idx])
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for anchor_set_idx in anchor_set]

g_anch = g.copy()

# Add a linker and corresponding anchors for the new repetition

linkers.append((rep_idx, 0))

g_anch.add_node(linkers[-1])

(g_anch, new_anchors) = add_anchors(

g_anch, linkers[-1], anchor_funcs, rep_idx, range(num_anchors))

# Consider all permutations of edges with repetition allowed

# between all combinations of the newly added anchors and the

# previous anchors

edges_combs = itertools.combinations_with_replacement(

anchor_edges_dict[anchor_set], len(anchors)

)

for edges_comb in edges_combs:

for edges_lst in multiset_permutations(edges_comb):

g_mod = g_anch.copy()

# Add specified edges between the newly added anchors and

# the previous anchors

for (edges_idx, edges) in enumerate(edges_lst):

map_anchors = (anchors[0:edges_idx] +

anchors[edges_idx+1:] +

[new_anchors])

dict_anchors = [(rep_anch_idx,) + anchor[1:]

for (rep_anch_idx,

map_anchor) in enumerate(map_anchors)

for anchor in map_anchor]

map_anchors = list(itertools.chain(*map_anchors))

relabel = nx.relabel_nodes(edges,

dict(zip(dict_anchors, map_anchors)))

g_mod = nx.compose(relabel,g_mod)

# Check for failures in the new graph with specified edges

subg = g_mod.subgraph(list(itertools.chain(*anchors)) + new_anchors)

handle_failures(g_mod, isg_lst, fail_g_lst, anchor_set=anchor_set,

subg=subg, anchor_edges_dict=anchor_edges_dict_new)

# Consolidate failed graphs with their anchors, linkers, and anchor set

anchors.append(new_anchors)

fail_lst += zip(fail_g_lst,

itertools.repeat(anchors),

itertools.repeat(linkers),
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itertools.repeat(anchor_set))

fail_lst = fail_lst if update_dict else only_isomorphic(fail_lst)

return fail_lst, anchor_edges_dict_new

def powerset(iterable):

"""

From the Python Standard Library itertools documentation.

Generates the powerset of iterable.

"""

s = list(iterable)

return itertools.chain.from_iterable(itertools.combinations(s, r)

for r in range(len(s)+1))

def check_add_anchors(g_spec_lst, anchor_func_lst, anchor_idxs, isg_lst,

num_rep, anchor_edges_dict, update_dict=True):

"""

See check_add_anchor.

Adds multiple anchors in each repetition to each graph in g_spec_lst, as

in check_add_anchor.

Args:

g_spec_lst (list(Graph,list(node),list(node),tuple(int))):

list of graphs with corresponding anchors, linkers, and

anchor type indices (in order)

anchor_func_lst (list(function)):

list of functions that take as input an anchor node and a graph,

and add that node to the graph as an anchor

anchor_idxs (iterable(int)): indices of anchors to be added

isg_lst (list(Graph)): list of induced subgraphs

num_rep (int): number of repetitions of the graphs in g_spec_lst

anchor_edges_dict (dict(tuple(int),Graph)):

dictionary mapping tuples of anchor type indices to allowable

edges between those anchors; the number and repetitions of

these anchors must match those in g_spec_lst

update_dict (bool): indicates whether to keep an updated dictionary

mapping tuples of anchor type indices to allowable edges

between those anchors, considering the new anchors
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Returns:

(list(Graph,list(node),list(node),tuple(int))):

list of graphs that have none of the indicated induced subgraphs,

with corresponding anchors, linkers, and anchor type indices

(dict(tuple(int),Graph)): dictionary mapping tuples of anchor

type indices to allowable edges between those anchors, considering

the new anchors; None if update_dict is false

"""

for anchor_idx in anchor_idxs:

g_spec_lst, anchor_edges_dict = check_add_anchor(

g_spec_lst, anchor_func_lst, anchor_idx, isg_lst, num_rep,

anchor_edges_dict,

update_dict=(True if anchor_idx != list(anchor_idxs)[-1]

else update_dict)

)

return g_spec_lst, anchor_edges_dict

def check_add_anchor(g_spec_lst, anchor_func_lst, anchor_idx,

isg_lst, num_rep, anchor_edges_dict,

update_dict=True):

"""

Given a list of graphs with their corresponding anchors and linkers

(in g_spec_lst), adds another anchor to each linker in each graph

(where anchors are of the same type).

Considers all possible edges between the newly added anchors and the

previous anchors, using a dictionary of allowable edges to reduce

possibilities.

Returns all graphs that have neither an induced subgraph in isg_lst or an

induced K_4.

If update_dict is true, also returns a dictionary mapping all combinations

of anchors to allowable edges between those anchors, considering the

newly added anchors.

Args:

g_spec_lst (list(Graph,list(node),list(node),tuple(int))):

list of graphs with corresponding anchors, linkers, and
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anchor type indices (in order)

anchor_func_lst (list(function)):

list of functions that take as input an anchor node and a graph,

and add that node to the graph as an anchor

anchor_idx (int): index of anchors to be added

isg_lst (list(Graph)): list of induced subgraphs

num_rep (int): number of repetitions of the graphs in g_spec_lst

anchor_edges_dict (dict(tuple(int),Graph)):

dictionary mapping tuples of anchor type indices to allowable

edges between those anchors; the number and repetitions of

these anchors must match those in g_spec_lst

update_dict (bool): indicates whether to keep an updated dictionary

mapping tuples of anchor type indices to allowable edges between

those anchors, considering the new anchors

Returns:

(list(Graph,list(node),list(node),tuple(int))):

list of graphs that have none of the indicated induced subgraphs,

with corresponding anchors, linkers, and anchor type indices

(dict(tuple(int),Graph)): dictionary mapping tuples of anchor

type indices to allowable edges between those anchors, considering

the new anchors; None if update_dict is false

"""

anchor_edges_dict_new = {} if update_dict else None

fail_lst = []

for (g, anchors, linkers, anchor_set) in g_spec_lst:

# Consider all possible anchor types to add

for (anchor_func_idx, anchor_func) in enumerate(anchor_func_lst):

g_anch = g.copy()

new_anchors = []

# Add a new anchor to each repetition

for rep_idx in range(num_rep):

(g_anch, new_anchors_temp) = add_anchors(

g_anch, (rep_idx,0), [(anchor_func_idx, anchor_func)], rep_idx,

[anchor_idx]

)

new_anchors += new_anchors_temp

# Consider all possible edges between the new anchors

# and the previous anchors
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edges_comb = [[] for _ in range(len(anchor_set))]

to_cont = False

for anchor_set_idx in range(len(anchor_set)):

anchor_subset = tuple(sorted(anchor_set[:anchor_set_idx] +

anchor_set[anchor_set_idx+1:] +

(anchor_func_idx,)))

if anchor_subset in anchor_edges_dict:

edges_comb[anchor_set_idx] = anchor_edges_dict[anchor_subset]

else:

to_cont = True

break

if to_cont:

continue

# Iterate through all possible edges between the new anchors

# and the previous anchors

fail_g_lst = []

for edges_lst in itertools.product(*edges_comb):

g_mod = g_anch.copy()

# Add the specified edges

for (edges_idx, edges) in enumerate(edges_lst):

anchors_subset = [[anchor for anchor in anchor_lst

if anchor[2] != edges_idx]

for anchor_lst in anchors]

map_anchors = (list(itertools.chain(*anchors_subset)) +

[(rep_idx, anchor_func_idx, anchor_idx)

for rep_idx in range(num_rep)])

sort_anchors = zip(*sorted(

anchors_subset[0] + [(0, anchor_func_idx, anchor_idx)],

key=itemgetter(1)

))[2]

dict_anchor_idx = dict(zip(sort_anchors, range(len(anchor_set))))

dict_anchors = [anchor[0:2] + (dict_anchor_idx[anchor[2]],)

for anchor in map_anchors]

relabel = nx.relabel_nodes(edges,

dict(zip(dict_anchors, map_anchors)))

g_mod = nx.compose(relabel, g_mod)

# Check for failures in the new graph with the specified edges

subg = g_mod.subgraph(list(itertools.chain(*anchors))+

new_anchors)
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handle_failures(g_mod, isg_lst, fail_g_lst,

anchor_set=tuple(sorted(anchor_set +

(anchor_func_idx,))),

subg=subg, anchor_edges_dict=anchor_edges_dict_new)

# Consolidate failed graphs with their anchors, linkers, and anchor set

new_anchors = copy.deepcopy(anchors)

for (anchor_lst_idx, anchor_lst) in enumerate(new_anchors):

anchor_lst.append((anchor_lst_idx, anchor_func_idx, anchor_idx))

fail_lst += zip(fail_g_lst,

itertools.repeat(new_anchors),

itertools.repeat(linkers),

itertools.repeat(tuple(sorted(anchor_set +

(anchor_func_idx,)))))

fail_lst = fail_lst if update_dict else only_isomorphic(fail_lst)

return fail_lst, anchor_edges_dict_new

def check_add_linkers(g_spec_lst, anchor_func_lst, isg_lst, rep_idxs,

update_dict=True):

"""

Given a list of graphs with their corresponding anchors and linkers

(in g_spec_lst), adds a new linker adjacent to each linker corresponding

to the repetition indices in rep_idxs.

Considers all possible edges between the newly added linkers and the anchors.

Returns all graphs that have neither an induced subgraph in isg_lst or K_4

as an induced subgraph.

If update_dict is true, also returns a dictionary mapping all combinations

of anchors to allowable edges between those anchors, considering the new

linkers.

Args:

g_spec_lst (list(Graph,list(node),list(node),tuple(int))):

list of graphs with corresponding anchors, linkers, and anchor type

indices (in order)

anchor_func_lst (list(function)):

list of functions that take as input an anchor node and a graph,

and add that node to the graph as an anchor
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isg_lst (list(Graph)): list of induced subgraphs

rep_idxs (int): indices of repetitions to which the new linkers are added

update_dict (bool): indicates whether to keep an updated dictionary

mapping tuples of anchor type indices to allowable edges between those

anchors, considering the new linkers

Returns:

(list(Graph,list(node),list(node),tuple(int))):

list of graphs that have none of the indicated induced subgraphs,

with corresponding anchors, linkers, and anchor type indices

(dict(tuple(int),Graph)): dictionary mapping tuples of anchor

type indices to allowable edges between those anchors, considering

the new linkers; None if update_dict is false

"""

for rep_idx in rep_idxs:

anchor_edges_dict_new = {} if update_dict else None

fail_lst = []

for (g, anchors, linkers, anchor_set) in g_spec_lst:

# Add a new linker adjacent to every linker corresponding to

# repetition rep_idx

g_lnk = g.copy()

new_linker = (rep_idx, 1)

linkers.append(new_linker)

g_lnk.add_node(new_linker)

g_lnk.add_edge(new_linker, (rep_idx, 0))

# Consider all combinations of edges between the new linker and

# the anchors

edges_comb = itertools.product([new_linker],

list(itertools.chain(*anchors)))

fail_g_lst = []

for edges_lst in powerset(edges_comb):

# Add the specified edges

g_mod = g_lnk.copy()

g_mod.add_edges_from(list(edges_lst))

subg = g_mod.subgraph(list(itertools.chain(*anchors)))

# Check for failures in the new graph with the specified edges

handle_failures(

g_mod, isg_lst, fail_g_lst, anchor_set=anchor_set, subg=subg,

anchor_edges_dict=(
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anchor_edges_dict_new

if rep_idx == list(rep_idxs)[-1]

else None

)

)

# Consolidate failed graphs with their anchors, linkers, and anchor set

fail_lst += zip(fail_g_lst,

itertools.repeat(anchors),

itertools.repeat(linkers),

itertools.repeat(anchor_set))

g_spec_lst = fail_lst if update_dict else only_isomorphic(fail_lst)

return g_spec_lst, anchor_edges_dict_new

def only_isomorphic(graphs):

"""

Prunes graphs such that all graphs in graphs are pairwise non-isomorphic.

Args:

graphs (list(Graph) or list(tuple(Graph,...)):

list of graphs to be pruned; may also be in the format of

tuples in which the first entry is a graph and the remaining entries

contain other info

Returns:

list(Graph) or list(tuple(Graph,...)):

list of pairwise non-isomorphic graphs, where the format matches that

of the input

"""

iso_lst = []

for i in range(len(graphs)):

keep = True

for g in graphs[i+1:]:

if ((type(g) is tuple and nx.is_isomorphic(graphs[i][0], g[0])) or

(type(g) is not tuple and nx.is_isomorphic(graphs[i], g))):

keep = False

break

if keep:

iso_lst.append(graphs[i])

return iso_lst
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