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1. Introduction

1.1. Background and motivation

Game theory is a classic and well-studied field that provides much of the framework for deciding
rational actions based off of utilities and valuations. One important subtlety in analyzing game
theory is that it is often beneficial to have a trusted mediator. In a typical strategic-form game, we
often consider the Nash equilibria of such a game, where players choose moves independently
of other players. Players can in fact receive higher utilities if they play according to a correlated
equilibria, which is much more general than a Nash equilibrium and requires only that players
would not wish to deviate from a given strategy given that other players do not deviate from their
assigned strategies [4]. However, such equilibria require a trusted mediator to calculate the correct
strategies and provide them to each player. The issue with depending on such a trusted mediator is
that in reality, a honest third party may not necessarily exist.

This brings us to a classical result in cryptography. In cryptography, there is the construct of
multiparty computation, where multiple parties each have secret inputs, and would like to calculate
functions without revealing each of their inputs. This concept was first introduced by Yao [29], in
particular in reference to the millionaire problem, where two millionaires would like to compute
who is richer without revealing information regarding their wealth outside of that fact.

It follows linearly that we could potentially replace trusted mediators with a multiparty compu-
tation framework. Indeed, Dodis et al. [13] showed that if prior to a game we allowed a “cheap talk”
phase where players could freely communicate1, then given a completely fair and secure multiparty
computation scheme, replacing trusted mediators with such a scheme will translate any correlated
equilibrium of the original game into a computational equilibrium of the new game.

One of the main issues in this model is fairness. A multiparty computation scheme is fair if
either all players obtain their desired function results or no players do. Note that in cryptography,
players are often considered to be either honest or dishonest; a well-known impossibility result
states that in general, if a majority of parties are not honest, then complete fairness is impossible
[11]. Note that some specific non-trivial functions can still be computed fairly without an honest
majority [16], and the impossibility result only applies in general.

It is important, then, to consider what occurs during cheap talk if we do not have the guarantee
of a fair scheme. Moreover, in a game theoretic model, it makes much more sense to consider players
to be rational, rather than honest or dishonest. Dodis et al. [13] show a schematic for computing a
correlated equilibrium between two parties, assuming a multiparty scheme that is secure but not fair
and assuming that both parties act rationally. However, their constructs do not extend to more than
two parties in general.

1This name arises because the phase costs and is worth nothing; indeed, players are free to lie in this phase.



Other results in this realm consider variations such as assuming parties cannot privately collude
(so in the cheap talk phase, all messages are broadcast) [22, 20, 19] or investigating results of
partially fair multiparty computation schemes [14, 23].

In this paper, we focus on formalizing the concept of rationality in the cheap talk phase. In
particular, we consider the multiparty computation scheme to be a game in itself, and explore what
it means for players to act rationally under certain equilibrium notions. Importantly, Shoham and
Tennenholtz [28] introduce the concept of NCC functions, which are functions for which telling
the truth is a Nash equilibrium. However, this heavily restricts the class of functions which we can
use in the cheap talk phase, and moreover, Nash equilibrium may not be the correct equilibrium
concept to consider; there may be refinements of Nash equilibrium that are more appropriate for
this analysis.

In fact, Halpern and Teague [18] showed that one of the building blocks of many multiparty
computation schemes, t-out-of-n secret sharing, is impossible to accomplish under iterated deletion
of weakly dominated strategies in the deterministic case. As a direct result of this, any deterministic
multiparty computation scheme that requires shared-secret reconstruction is impossible under
iterated deletion of weakly dominated strategies.

Some results related to this include Abraham et al. [1], who extend this problem to allow for
coalitions and agents with unknown/nonstandard utilities, Lysyanskaya and Triandopoulos [24],
who consider a mixed-behavior model where people are either rational or adversarial, and Gordon
and Katz [17] who show that if in secret sharing we assume rational dealers (rather than honest
dealers), then there exists a probabilistic t-out-of-n secret sharing scheme.

1.2. Our results

In this paper, we focus on Halpern and Teague’s [18] results, albeit under a slightly different
equilibrium concept. We consider iterated deletion of weakly dominated strategies in every subgame
of deterministic t-out-of-n secret sharing schemes (meaning, we restrict the ordering of iterated
deletion to the natural order in subgame hierarchies). Their proof in fact shows the same impossibility
result under this equilibrium concept, and we will reiterate the relevant portions of their proof.

Moreover, in cryptographic literature, there are multiparty computation frameworks that attempt
to introduce fairness by using utilities outside of classical cryptography. We focus on two such mech-
anisms, namely gradual release [15] and a compensation framework based on Bitcoin/Ethereum
[21], which introduce penalties for failure to contribute honestly through resource and money
incentives respectively. Note that both of these mechanisms allow for fair multiparty computation
even if there is no honest majority. We show that gradual release, under a game theoretic anal-
ysis with rational players and with utilities adjusted to take into account resource incentives, is
impossible under iterated deletion of weakly dominated strategies in every subgame. However,
the compensation framework under a symmetric analysis results in a fair secret sharing scheme in
which all players are incentivized to participate.

We further note that the negative result for gradual release case implies an impossibility result
for multiparty computation schemes dependent on secret sharing, parallel to the analysis by Halpern
and Teague [18]. The positive result for the compensation framework implies that it is possible for
such multiparty computation schemes to be rationally carried out, although does not necessarily
imply definitively positive results in multiparty computation. There are also further issues in the
compensation framework, in terms of correctly pricing cost incentives such that the utilities we

2



assume hold.

1.3. Outline

In Section 2, we introduce some basic game theoretic and cryptographic notions. We also discuss
the implications of results in rational secret sharing on multiparty computation schemes. In Section
3, we set up Halpern and Teague’s [18] framework for analyzing secret sharing, and we prove the
impossibility of deterministic secret sharing schemes. In Section 4, we briefly introduce the notion
of gradual release [15] and we prove the impossibility of deterministic secret sharing schemes under
a gradual release framework. Finally, in Section 5, we briefly introduce the notion of a compensation
framework using Bitcoin/Ethereum [21] and we prove the success of deterministic secret sharing
schemes under a compensation framework, under iterated deletion of weakly dominated strategies
in every subgame. We also discuss the restrictions of this result, specifically problems in pricing
cost incentives.

2. Preliminaries and definitions

2.1. Game theory

We begin by introducing some standard game theoretic notation, with minor adaptations for simplic-
ity. The games we consider here are dynamic, that is to say, they consist of multiple stages, and we
represent them in extensive form.

An extensive form game consists of [26]:

1. players: N = [n]

2. histories: H, where h ∈ H is a sequence of moves up to a given point in time and /0 ∈ H
represents the start of the game

3. available actions: A(h) for all h ∈ H

(a) terminal histories: Z ⊂ H are such that A(z) = /0 for all z ∈ Z

4. player assignment function: P(h) ∈ N, which determines which player moves at h ∈ H \Z

5. information sets: I, which are given as a partition of H such that for h,h′ ∈ X ∈ I, P(h) = P(h′)
and A(h) = A(h′); in other words, player P(h) cannot distinguish between h and h′

6. payoffs: {Ui(z)}i∈N at every terminal history z ∈ Z

This game can be thought of in the form of a game tree, where each node is a history and each edge
represents the available actions at that history.

We divide a secret sharing or multiparty computation scheme into rounds, where at each round,
each player gives information to some subset of other players (a player may choose to give no
information in a round). Note that information exchange occurs synchronously within each round.

For simplicity, we collapse our game tree so that each level of the tree corresponds to a round
of a game, and the edges out of each node represent the collection of actions performed in the
corresponding round. Note that multiple nodes within a level may be within the same information
set for a player i, but nodes across different levels are necessarily within different information sets
for that player.

Now, a strategy for player i is a function that maps their information sets to actions (note that
these actions may be taken probabilistically). We denote a strategy for player i by σi, and a strategy
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over all players by σ := (σ1, . . . ,σn). We let σ−i denote the tuple of all strategies σ j for j 6= i, and
abusing notation slightly, we define σ = (σ−i,σi).

Each player has a preference function for strategies, which we denote by Ui(σ) for player i.
Note that actions that players take can be represented as a path from the root node of the game tree
to a leaf, so we can alternatively represent a strategy by such a path, which we call a run and denote
by r, and Ui(r) is defined accordingly.

For the purposes of this paper, we consider primarily a refinement of Nash equilibrium, namely
iterated deletion of weakly dominated strategies in every subgame. While Nash equilibrium is a
well-known and traditional concept for considering rationality, in the context of secret sharing and
multiparty computation, there are multiple strategies that lead to Nash equilibrium. The concepts
behind iterated deletion of weakly dominated strategies mirror classic arguments for fairness in
secret sharing, and as such we focus on this as a definition for rationality.

More formally, a player i’s strategy σi weakly dominates σ ′i if Ui(σ−i,σi) ≥Ui(σ−i,σ
′
i ) for

all σ−i and there exists σ ′−i such that Ui(σ
′
−i,σi)>Ui(σ

′
−i,σ

′
i ). Intuitively, we should want honest

participation in our protocols to be a Nash equilibrium in which no player is playing a weakly
dominated strategy, as any such player would have no reason not to play a dishonest strategy instead.

In iterated deletion of weakly dominated strategies in extensive form games in every subgame,
we make use of backward induction, where we start at the end of the game (at the leaves of the
game tree), and at each information set, we delete all strategies that are weakly dominated. We
proceed with this process level-by-level up the game tree, until we reach the root. The strategies
which remain are our equilibrium strategies. Note that it is important that we delete all weakly
dominated strategies at each step, since otherwise, the order in which we delete weakly dominated
strategies may affect the outcome of this iterated deletion process [26]. However, we are explicitly
ordering our iterated deletion by the natural subgame hierarchy within our extensive form game
(note that every level, by construction, represents a subgame).

2.2. Secret sharing and multiparty computation

2.2.1. Secret sharing We now discuss the basic setup for t-out-of-n secret sharing. A dealer holds
a secret message m, which he splits into shares (m1, . . . ,mn) such that anyone with t shares can
reconstruct the message, but anyone with (t− 1) shares cannot. Moreover, anyone with (t− 1)
shares “learns nothing” about m; more concretely, given two messages m 6= m′, for all S ⊆ [n]
such that |S|< t, the distribution of {mi}i∈S must be computationally indistinguishable from the
distribution of {m′i}i∈S. Note that in this scenario, we commonly think of n people, where the dealer
gives person i share mi.

Note that in cryptography, we primarily consider secret sharing among n honest parties, less
than t of which have been compromised by an outside adversary. In this sense, the message m is
safe from outside adversaries and the honest parties can meet to jointly reconstruct the message; all
honest parties follow protocols completely, and as such reconstruction is straightforward in that
they will necessarily reveal their shares to other honest parties.

In this sense, reconstruction is not necessarily fair. A scheme is fair if either all players obtain
the secret message or no players do. However, in this scenario, clearly (t−1) players can reveal
their shares and the final player can abstain from revealing his share, and leave with the secret
message. This is a concept that is considered more heavily in multiparty computation, and we will
discuss this further in Section 2.2.2. Note that this is a particularly relevant point in the context of
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rationality, where we have n parties who may or may not agree to send each other shares to allow for
reconstruction, depending on whether it is rational for them to do so. If a party gains at least (t−1)
other shares, then it will be able to reconstruct the message, although that party may not necessarily
reveal its shares to other parties. This is the basic scenario that we investigate in Sections 3.1, 4.2,
and 5.3.

As an example, one well-known secret sharing scheme is Shamir’s secret sharing [27], where
the dealer chooses a random degree (t− 1) polynomial f such that f (0) = m and where shares
are given by mi := f (i). Other notable schemes have been introduced by Blakley [7], Asmuth and
Bloom [3], and Mignotte [25].
2.2.2. Multiparty computation Secret sharing forms the basis of many protocols for multiparty
computation; in this paper, we focus specifically on schemes that depend on secret sharing [8, 10,
12, 14, 23]. In multiparty computation, we have n parties, each with a private input xi, who would
like to jointly compute a function f (x1, . . . ,xn) without revealing their individual inputs (excepting
information revealed in the function output).

As a concrete example, the BGW protocol is a general multiparty computation scheme in which
each player acts as a dealer and distributes shares of their private input to all of the other players.
These shares are computed such that each player can use them to compute a share of the final
output [6, 2]. Then, t players can combine their shares to receive the final output. This protocol
encapsulates a few important notions, which we will briefly discuss here.

First, it is important to note that in the multiparty computation schemes that we consider,
parties are expected to be “honest-but-curious.” That is to say, we assume that all parties engage in
the protocol correctly, and do not attempt to sabotage the protocol by sending false information;
however, players may attempt to compute as much as possible with the information that they receive.
In particular, protocols based on t-out-of-n secret sharing are secure against a group of < t passive
adversaries (also known as semi-honest security); such adversaries follow the protocol, but may
attempt to pool their shares and collude to gain any outside information, and in particular, to gain
information about the shares of other players.

Note that this assumption is a direct extension of the assumptions in secret sharing, where we
assume that the dealer provides honest, authenticated shares so that players cannot send each other
falsified shares.2 As such, when we consider rational players in multiparty computation, we assume
that such players are “rational-but-not-malicious”; in this sense, players can decide to either send
honest information or abstain from participating, but cannot send false information.

Note that our schemes do afford us privacy and security against outside adversaries. Privacy
is the notion that any given player learns nothing more about the other players’ inputs than the
function output; there are ways to formalize this, specifically in simulation security, but this is
outside the scope of our paper. Security against outside adversaries occurs in the sense that for a
multiparty computation scheme based on t-out-of-n secret sharing, if an adversary gains the views
of < t players, then that adversary “learns nothing” about the final output.

Finally, we are interested in the concept of fairness, as mentioned in Section 2.2. Importantly, in
classical cryptography where players are either fully honest or not, complete fairness is impossible
in general if a majority of the parties are not honest (this is due to a well-known result by Cleve
[11]); this is one of the motivations for considering rational parties instead. However, in Section 3.1

2There are extensions to secret sharing that address the possibility of malicious players, as in verifiable secret
sharing. This is outside the scope of this paper.
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(and in Halpern and Teague’s [18] result), one of the core reasons for the failure of rational secret
sharing is due to an inherent lack of fairness; as such, we consider schemes outside of classical
notions, which incorporate fairness even with no honest majority by allowing other motivations,
such as resources as in Section 4.2 and money as in Section 5.3.

Note that Cleve’s [11] result does not preclude specific non-trivial functions from being com-
puted fairly without an honest majority; Gordon et al. [16] demonstrated fair protocols for certain
non-trivial functions in a two-party computation setting.
2.2.3. Implications of secret sharing on multiparty computation We digress here to make a point
about how results in rational secret sharing generalize to multiparty computation. There are well-
known schemes for multiparty computation that require fair secret sharing (and are deterministic
and have an upper bound of running time3) [8, 10, 12, 14, 23], and any secret sharing scheme that
is proven to be impossible under rationality (as in Halpern and Teague’s results [18]) will likewise
render those multiparty computation schemes impossible under rationality.

On the other hand, if we have a secret sharing scheme in which players will rationally carry out
the protocol, then this protocol can be applied to such multiparty schemes dependent on fair secret
sharing. While this does not necessarily prove that these multiparty computation schemes will be
rationally carried out, and indeed in the BGW protocol this does not solve the issues of requiring a
“honest majority”4, this is a step towards eventually achieving such results.

Here, we briefly formalize the point that impossibility in rational secret sharing implies impos-
sibility in rational multiparty computation. In multiparty computation, players exchange shares of
their own input and perhaps other information to eventually compute a function. Let I1, . . . , IN repre-
sent each atomic piece of information that are of interest to a player in performing the multiparty
computation.

The utilities for receiving certain pieces of information here are somewhat more complicated to
generalize for cases where players have other values such as time and money, as in Sections 4.2 and
5.3; however, they follow as a direct extension of the utilities given in those sections. We will focus
here on the classic case, given by Halpern and Teague [18] and as an extension of the utilities for
secret sharing in Section 3.1. In this setting, each player cares first that they learn the secret, and
second that as few other people as possible learn the secret (roughly); there are no other factors
affecting each player’s utility.

More formally, given a run r on the game tree, we define info(r) := (I1, . . . ,In), where
Ii ⊆ {I1, . . . , IN} represents the information that player i receives in r. We let infoi(r) := Ii. The
relevant utilities are given as follows:

U-1. Ui(r) =Ui(r′) if info(r) = info(r′)

U-2. Ui(r)≥Ui(r′) if infoi(r)⊇ infoi(r′) and info j(r)⊆ info j(r′) for j 6= i

U-3. Ui(r)>Ui(r′) if info j(r)⊂ info j(r′) for some j 6= i, info j′(r) = info j′(r′) for all
j′ 6= j, and U j(r)<U j(r′)

U-4. Ui(r′1)<Ui(r′2) if infoi(r1)= infoi(r′1), infoi(r2)= infoi(r′2), info j(r1)= info j(r2)
for all j 6= i, info j(r′1) = info j(r2)

′ for all j 6= i, and Ui(r1)<Ui(r2)

3These are conditions that we require in our results in Sections 3.1, 4.2, and 5.3.
4In the BGW protocol, even with rational secret sharing, we still require that t < n

/
2 , which is a condition that

arises from the Lagrange interpolation that is used within the protocol.
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These utilities represent generalizations of the utilities for classic secret sharing in Section 3.1, and
it can be checked that the utilities necessary for classic secret sharing hold as long as these utilities
hold.

In this sense, if it is impossible to carry out a secret sharing protocol under a certain framework,
then it is impossible to complete the secret sharing necessary for such multiparty computation
schemes.

3. Classic setting
In this section, we consider a classic cryptographic setting, where players’ utilities are solely defined
by who receives knowledge of the secret message. The results here follow from Halpern and
Teague’s [18] work, although we introduce only a portion of their proof.

3.1. Secret sharing

In this subsection, we consider a t-out-of-n secret sharing scheme, and prove that as long as there
exists a known bound on running time, there is no deterministic mechanism for such secret sharing
under rationality. This result was first proven by Halpern and Teague [18], using backwards induction
and a full classification of types of information exchange. We instead use a slightly different concept
of rationality and show an impossibility result using only backwards induction.
3.1.1. Setup We begin with assumptions similar to those of Halpern and Teague [18]. We assume
that a dealer issues atomic and authenticated shares, so that players cannot subdivide or lie about
their shares.5 We will begin with a model in which there is a single secret message, m, and each
player i has share mi of that message. Note that t shares are sufficient to reconstruct m.

At each node in our game tree, a player i can

• Give a subset of other players their authenticated share, mi

• Give a subset of other players an authenticated share that they have received from another
player j 6= i, m j

• Give a subset of other players an authenticated share that they have received from another
player j 6= i, m j, that is also signed by a different player k 6= i, j

The main restriction is that when sending shares, i must send valid authenticated shares. In this
sense, when a person k receives a share, they can be certain that the shares are true. Note that i may
also send information about who knows which shares, since clearly if person k signed a share m j,
then person k knows that share. However, this information must be accompanied by the share in
question itself.

The utilities of a run through the game tree are given solely by which players can compute the
secret message m, and these are taken directly from Halpern and Teague’s [18] setup. Given a run
r, we define info(r) := (s1, . . . ,sn) where si = 1 if person i learns m and si = 0 otherwise. We let
infoi(r) := si. The utilities are given as follows:

U-1. Ui(r) =Ui(r′) if info(r) = info(r′)

U-2. Ui(r)>Ui(r′) if infoi(r)> infoi(r′)

5Note that earlier, in Section 2.2.2, we have seen that this assumption does not necessarily hold in multiparty
computation. However, since we are proving an impossibility result, it is alright for us to make this assumption.
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U-3. Ui(r) >Ui(r′) if infoi(r) = infoi(r′), info j(r) ≤ info j(r′) for all j 6= i, and there
exists some j such that info j(r)< info j(r′)

In this sense, each person i values first that they learn the secret, and second that as few other people
as possible learn the secret (roughly). This gives us all of the necessary information to proceed to
our impossibility result.
3.1.2. Analysis

Theorem 3.1. If the players’ utilities satisfy U-1 – U-3, then there is no deterministic mechanism for
t-out-of-n secret sharing in which the game tree has a commonly known bound and using iterated
deletion of weakly dominated strategies in every subgame, some player learns the secret message.

Proof. Suppose that our game tree has ` levels, where ` is given by the commonly known bound on
running time. We will use backwards induction on the level, and in particular, we will start with the
inductive step. The base case will be clear by a similar argument. At each stage in our induction, we
will delete all weakly dominated strategies at the corresponding level.

The focus of our analysis will be on information sets containing the strategy in which no one
sends any shares to anyone. Call the strategy of doing nothing s, and let the path through the tree
corresponding to s be denoted by the nodes (n0, . . . ,n`), where n0 is the root and n` is a leaf node.
Denote the information set for player i in level m containing node nm by Ii,m.

Assume that at level m, for every player i in every information set, doing nothing is never
weakly dominated, and in particular, the utilities given by iterated deletion of weakly dominated
strategies up to level m are precisely the utilities of doing nothing up to level m.6 Moreover, assume
that for each i, in Ii,m, the sole weakly dominant strategy is for i to do nothing. We now show that
these two properties hold in level m−1.

Fixing person i, it is easy to see that i can never have a lower utility by sharing no information,
and as such, sharing no information will never be weakly dominated. More precisely, because of
our iterated deletion through level m, no matter what i sends or does not send, i’s utilities will be as
if no exchanges happen after this round. Since sending information can only (potentially) decrease
i’s utility, it is clear that sending nothing is never weakly dominated, and in fact, the utility given by
deleting weakly dominated strategies will be precisely the utility given in which i does nothing.

It remains to show that in the information set Ii,m−1, the sole weakly dominant strategy is for
i to do nothing. Note that i has no information other than mi, since otherwise i would not be in
this information set. If i chooses to send mi to any person j, then at node nm−1, there is an edge
corresponding to the case in which t−2 other people choose to send their shares to j (δ−i), and
by our inductive hypothesis, the utility of choosing that edge is as if no other exchanges occur
following this (since all other strategies have been deleted). It is clear, then, that for person i, it is
strictly better to send no shares (δ ′i ) than to send any shares (δi) at node nm−1, that is to say,

Ui(δ−i,δi|nm−1)<Ui(δ−i,δ
′
i |nm−1).

This trivially extends if i chooses to send any number of messages to anyone. Moreover, as explained
before, at any other node in the information set, whether i sends shares or not cannot have a negative

6In this sense, it does not matter which equilibrium strategy we choose to collapse that information set to at any
given level; it suffices to use the utilities given by doing nothing.
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impact on i’s utility, since i’s utility only decreases with sharing more information. Thus, for all
p ∈ Ii,m−1 and for all σ−i, we have

Ui(σ−i,δi|p)≤Ui(σ−i,δ
′
i |p).

As such, doing nothing is the sole weakly dominant strategy for i within Ii,m−1 at level (m− 1).
This argument applies symmetrically for all people and their relevant information sets, and this
concludes our inductive step. Note that the base case is argued in precisely the same way.

At node n0, we note that since no one has any prior information, there is merely one information
set left. This information set is necessarily Ii,0 for all i, and as a result, s is the sole strategy that
survives iterated deletion of weakly dominated strategies at every subgame. This concludes our
proof.

4. Gradual release setting
In this section, we consider a modified setting where players’ utilities also depend on the resources
and time necessary to obtain the secret message. We extend the impossibility results by Halpern and
Teague [18], and demonstrate that there is no deterministic method for rational t-out-of-n secret
sharing in this framework (given a commonly known upper bound).

4.1. Gradual release

We focus on a mechanism known as gradual release, whereby complete fairness can be achieved
even without an honesty majority. Colloquially, gradual release involves releasing secrets piece
by piece, such that if a party aborts at any stage, the remaining parties can compute the secret in
approximately the time it takes the aborting party to compute the secret. There are various initial
results in this realm, such as from [8, 14, 5, 12].

We present here results by Garay et al. [15], who use gradual release formally to achieve
fairness in multiparty computation. In particular, Garay et al. note that the main fairness issue with
multiparty computation schemes lies in a revelation phase, where parties each reveal their secret
shares to construct the final output. Their gradual release scheme addresses this phase.
4.1.1. Commit-prove-fair-open The basic structure for their scheme involves the “commit-prove-
fair-open” scheme, FCPFO, which consists of three phases. In the commit phase, every party i
broadcasts a commitment to a value xi. In the prove phase, every party broadcasts a proof yi
such that R(xi,yi) = 1 for some relation R. Finally, in the open phase, each party opens x1, . . . ,xn
simultaneously. Note that the opening phase may take multiple rounds, but this simultaneous
opening guarantees fairness.
4.1.2. Timelines To implement this scheme, we introduce the notion of a timeline.

Let N = pq be a Blum integer, that is to say, p,q are distinct primes congruent to 3 mod 4.
Define G := (g,g2,g22

,g23
, . . . ,g2k

) where operations are taken in ZN and g is randomly chosen
from Z∗N . We also define G[i] = g2i

, and we assume that squaring takes one unit of time. Given
a factorization of N, it is possible to compute G[i] for any i in polynomial time. However, it is
postulated that without such a factorization, each squaring must be computed sequentially, and
more strongly, that given a1, . . . ,a`+1 where |a`+1−ai| ≥ 2` for i ∈ [`] and given (G[a1], . . . ,G[a`]),
G[a`+1] appears pseudorandom [15]. This is known as the yet-more-general BBS assumption (YMG-
BBS), and is in fact of the generalized BBS assumption, which was first introduced by Boneh and
Naor [10].
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We define a decreasing timeline to be T = 〈N,g,~u〉, where N is a Blum integer, g = G[0], and
u[i] = G[2k−2k−i] for i ∈ [k]. In essence, u[k] appears psuedorandom given g, and takes exponential
time to obtain given g.

Given a master timeline T , we define a derived timeline to be a timeline T ′ = 〈N,h,~v〉 such that
h = gα and v[i] = (u[i])α for α ∈ Z[1, (N−1)/2 ]. We call α the shifting factor. Importantly, assuming
the composite decisional Diffie-Hellman (CDDH) assumption [9] and the YMG-BBS assumption,
v[k] appears psuedorandom even given the entire master timeline [15].
4.1.3. Implementing gradual release Now, we combine the notion of a timeline with a commit-
prove-fair-open scheme. We take a master timeline T to be a common reference string (CRS), known
to all players.

In the commit phase, each player i derives a timeline Ti = 〈N,gi,~ui〉 and broadcasts a timeline-
commitment (gi,xi ·ui[k]). Given xi ·ui[k], any player j can force-open the commitment by repeatedly
squaring gi; however, since ui[k] appears pseudorandom, this is considered too costly to be possible.

In the prove phase, each player i gives a zero knowledge proof that they know the shifting factor
for their derived timeline.

We have k rounds in the open phase. On round `, each player i broadcasts ui[`] along with a zero
knowledge proof that this is a valid point. If in any round a player aborts or fails to broadcast, then
all players abort and force-open the timeline-commitments that they have received if it is feasible to
do so using repeated squaring. Otherwise, if the distance to the end of the timeline is too large, all
players simply do nothing. Note that in this case, the players who aborted the round prior will also
be unable to reach the end of the timeline, since the information that they have received will still
appear pseudorandom with respect to ui[k] for all i. Garay et al. [15] proved that this scheme is fair.

Using this commit-prove-fair-open scheme in place of the revelation phase of multiparty
computation schemes, we obtain fair multiparty computation. Details regarding security and the
specific models in which a commit-prove-fair-open scheme may be used are outside the scope of
this paper, but are given in [15].

4.2. Secret sharing

We now consider the concept of rational t-out-of-n secret sharing under a gradual release setting.
We prove that there is no deterministic method for secret sharing in this framework under iterated
deletion of weakly dominated strategies in every subgame, provided that there exists a commonly
known bound on running time.
4.2.1. Setup As in Section 3.1, we assume that shares are atomic and authenticated. Moreover, we
enforce the gradual release protocol to some degree; while theoretically players can send timeline-
commitments and proofs as they please, this results in a simple extension of the arguments made in
Section 3.1, with some added utilities regarding the time it takes to recover the secret. This also
poses issues with the protocol itself in terms of varying the number of rounds, since the essence of
the protocol depends on the number of rounds it takes to complete the protocol versus the time it
takes to force-open a timeline-commitment.

In this spirit, we focus on a model in which players either follow the gradual release protocol
or abort. In particular, we have k+ 1 rounds in our game, where the first round represents the
commit and prove phases of gradual release and the remaining rounds represent the open phase
of gradual release. In each round, each player chooses other players to send its corresponding
timeline-commitment and proof to. A player may alternatively choose to abort and force-open its
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information. In this sense, we disallow communication of all other types of information.7

We assume that if a player i chooses not to send player j its timeline-commitment and proof
in a given round, then player i cannot send player j timeline-commitments and proofs in any
future rounds. As such, if a player receives < t timeline-commitments in a round, then we assume
that the player force-opens its timeline-commitments from the previous round and aborts game
participation.8

The utilities for our players are given in a similar way as in Section 3.1. There is, however, an
added notion of time needed to obtain the secret. Given a run r in the game tree, let time(r) be a
tuple (t0, . . . , tn), where ti denotes the time it takes player i to obtain the secret. More precisely, we
define playing a round to take time 1 and squaring once to take time 1. Notably,

• If all players follow the protocol, then ti = k+1 for all i.

• If player i force-opens, ti is given by the sum of the number of rounds played and the number
of squarings required to force-open its timeline-commitments.

• If player i receives < t commitments in the initial commit-prove round, then ti = ∞.

Now, let info(r) be a tuple (s1, . . . ,sn), where si = t−1
i (where we take ∞−1 to be 0). We have

the following assumptions:

U-1. Ui(r) =Ui(r′) if info(r) = info(r′)

U-2. Ui(r)>Ui(r′) if infoi(r)> infoi(r′)

U-3. Ui(r) >Ui(r′) if infoi(r) = infoi(r′), info j(r) ≤ info j(r′) for all j 6= i, and there
is some j such that info j(r)< info j(r′)

In this manner, each person values first that they learn the secret, second that they learn the secret
quickly, and third that as few other people as possible learn the secret (roughly) with a preference
for other people learning the secret as slowly as possible. We now proceed to our impossibility
result.
4.2.2. Analysis

Theorem 4.1. If the players utilities satisfy U-1 – U-3, then there is no deterministic mechanism for
t-out-of-n secret sharing using a gradual release protocol in which the game tree has a commonly
known bound and using iterated deletion of weakly dominated strategies in every subgame, some
player learns the secret message.

7It is important to note that it is somewhat difficult to formalize allowable outside communication while remaining
within the gradual release protocol. The time it takes for communication between rounds of the protocol must in some
way be limited by the time it takes to force-open timeline-commitments at that round, since otherwise it would defeat
the purpose of gradual release. As we proceed deeper into the open phase, the time to force-open becomes polynomial,
and the restrictions on outside discussion must reduce to reflect this change. We defer a more thorough analysis of this
point.

8Technically, players can skip rounds and simply send timeline-commitments and proofs corresponding to later
rounds. This, however, is against the spirit of gradual release, in the sense that players can ignore gradual release
entirely and simply participate only in the final round. We require that players commit in previous rounds if they wish
to continue the gradual release protocol.
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Proof. The argument follows almost exactly from that in Theorem 3.1, with backwards induction;
this is due to the nature of the utilities, and the fact that each person values that others learn the
secret slowly.

In particular, at any given round, sharing no information will never be weakly dominated, since
information shared only serves to assist other players in learning the message faster.

Moreover, in the information set containing the strategy s where no one does anything, not
sharing information at any given round will always be strictly better than sharing information, in
the case where t−2 other people also share their time-commitments and proofs (with the inductive
hypothesis).

These two notions roughly encapsulate the basic premise of the backwards induction; we leave
out a full proof here.

5. Compensation setting
We now consider a viable alternative approach that does survive iterated deletion of weakly dom-
inated strategies in every subgame; namely, we consider a scheme that constructs a payment-
commitment mechanism in which parties that behave dishonestly (i.e. renege on their commitment
to participation in the MPC protocol) compensate parties that participate honestly. As demonstrated
by Kiayias et al. [21], it is possible to construct a "robust MPC protocol with compensation,"
which takes a semi-honest MPC protocol and augments it with a payment-commitment mechanism
that guarantees that, within a constant number of coin-transfer and communication rounds, honest
participants will either receive the desired output or receive a net coin profit. This mechanism can
be implemented in practice using Ethereum.

Our own work is to show the extent to which this protocol-with-compensation scheme ex-
tends to the rational-participant setting, as Kiayias et al. merely show that honest parties receive
compensation without considering the utilities of any of the participants. We demonstrate that this
protocol is dominant-strategy-honest with sufficiently large coin values, but making the protocol
tremble-resistant is only achievable for certain sets of utility functions for the participants.

5.1. The commitment ledger

The protocol described in [21] requires access to a ledger that supports special transactions that
include conditions under which the transferred coins can be spent. Specifically, transactions placed
in this ledger include a three-part validation predicate for deciding if the transaction is valid.

Let a transaction be defined as transferring coins from participant i to participant j. Then, the
validation predicate is specified as follows:

1. Time restriction: An interval of time (τ−,τ+) ∈ Z× (Z+∪{∞}) where before time τ−, no
party can spend the coins in the transaction; between time τ− and τ+, participant j can spend
them (provided that parts 2 and 3 of the validation predicate are met), and after time τ+, the
coins revert to being unrestrictedly owned by party i.

2. Spending link: An identifier α for linked transactions, where a transaction from i to j transfer-
ring v coins is valid only if participant i has received a net gain of at least v coins in transfers
with spending link ID α . Kiayias et al. [21] use this to link together with transactions so as to
facilitate reclaiming coins from transactions if a would-be recipient has violated the protocol.
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3. State-dependent condition: A function R from the current ledger-state, ledger-buffer, and
transaction to be validated to {0,1}, where only transactions that causeR to evaluate to 1 are
valid. This part is used to specify that participants in the protocol must participate correctly in
the MPC or secret-sharing protocol in order to claim the funds committed to them.

5.2. The compensation protocol

The compensation protocol in [21] is designed to be composed with an arbitrary semi-honest protocol
πSH , where the only assumption required (beyond that the protocol is semi-honest secure) is that the
protocol provide for verifying that participants have given correct input via zero-knowledge proofs.
As described in Section 2.2.2, in our "rational-but-not-malicious" setting, players are assumed to
be limited to either sending honest information or abstaining from participating; in this sense, we
satisfy the semi-honest condition. Note that the semi-honest protocol is also assumed to terminate
in a number of rounds with a known upper bound `.
5.2.1. Setup At time τ = 0, the participants check that they have sufficient funds for the protocol,
where "sufficient funds" means (n−1) ·c coins, where c is the amount transferred in each individual
transaction from a player i to a player j.
At time τ = 1, every player i submits the following "commitment" transactions to the ledger: For
each protocol round from r = 1, . . . , `, and each player j 6= i, there will be a transaction of c coins
from i to j such that j receives the coins only if she claims them in round r.9 These commitment
transactions specify that in order for player j to claim their coins in round r, player j must place a
"claiming" transaction in round r where its aux field contains j’s valid message for round r of πSH ,
and the protocol must not have aborted or terminated through round r.10

5.2.2. Claiming committed transactions / executing the protocol : From times τ = 1, . . . , `+1,
every player i does the following:

1. Read the ledger’s state and compute the state of the protocol πSH , given the messages posted
by the participants.

2. If the protocol has not reached an aborted or terminated state given the current message
transcript, calculate i’s message for round τ and post it in a "claiming" transaction’s aux field.

3. If the protocol has aborted or terminated, then post transactions reclaiming the funds from
commitment transactions that have not been claimed.

To intuitively frame this in a rational setting, if the c coins in each transaction are valuable enough
to the participants, then each participant will prefer to participate honestly in the protocol rather
than defect at any round. If every party participates honestly in the protocol, then they will each
obtain the desired output and net 0 coins. However, if a player i completes the setup phase but does
not honestly complete the protocol, then that player may still learn the MPC output but will be down
(n−1) ·c coins.

We will formalize this intuition and specifically apply this compensation framework to secret
sharing.

9We are using the time-restriction feature of the ledger, as rounds can be specified using time intervals in this setting.
10Thus using the state-dependent condition feature of the ledger. This enforces correct participation in the protocol if

the participants wish to claim the coins.
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5.3. Secret sharing

Kiayias et al. [21] include a substantial amount of detail on setting up a clock for synchronizing
actions taken by the participants, but we will take for granted, as in the classical secret sharing
setting, that participants act in synchronous, discrete rounds. This allows us to view the players’
participation in the compensation protocol as an extensive form game, as we did in Sections 3.1 and
4.2.
5.3.1. Setup In the secret-sharing-with-compensation setting, each player i participates in a setup
phase where they may choose to make the initial commitment to pay c coins to each player j
that sends i j’s secret. After the setup phase, the possible actions are the same as in section 3.1,
but the utilities must be revised to account for the values of the coins. As in Section 3.1, let
info(r) := (s1, . . . ,sn) where si = 1 if person i learns the secret and si = 0 otherwise. Also, let
profit(r) := (p1, . . . pn) where pi is the net profit in coin player i finishes the run with. We describe
the utilities as follows, where Ui(r) describes the utility of player i given run r:

U-1. Ui(r) =Ui(r′) if info(r) = info(r′) and profiti(r) = profiti(r′)

U-2. Ui(r)>Ui(r′) if infoi(r)> infoi(r′)

U-3. Ui(r)>Ui(r′) if infoi(r) = infoi(r′) and profiti(r)> profiti(r′)

U-4. Ui(r)>Ui(r′) if infoi(r)= infoi(r′), profiti(r)≥ profiti(r′), info j(r)≤ info j(r′)
for all j 6= i, and there exists some j such that info j(r)< info j(r′)

In this sense, each person i values first that they learn the secret, second that they maximize their net
coin profit, and third that fewer other people learn the secret.11 We’ll see that this utility assumption
is actually a fairly strong assumption – it leads us to be fairly demanding as to how much each
player must value receiving c coins – but these assumptions allow us to find a positive result for
having a secret sharing protocol that is (weakly) dominant-strategy-honest for rational players.
5.3.2. Analysis

Theorem 5.1. If the players’ utilities satisfy U-1 – U-4, then if the secret sharing procedure
has a commonly known bound of `, the only strategies that survive iterated deletion of weakly
dominated strategies in every subgame are strategies in which each player i opts-in to the initial
setup commitment and sends its secret share to all players j 6= i before the ` rounds are up, and no
player net gains or loses any coins.

Proof. We again suppose that the game tree has ` levels, where ` is the commonly known bound
on running time. Let us consider an arbitrary player i in an information set in which the set
P−i = { j such that i has not sent its secret to j} is nonempty, and we are in level ` of the tree (the
last round). No action player i takes at this level affects whether or not player i learns the secret,
so player i maximizes his utility by maximizing his net coin profit. (We have from our definition
of the players’ utility functions that the players value gains in number of coins over preventing
other players from learning the secret.) The unique coin-profit-maximizing action to take at this
information set is for player i to send his secret to every member of P−i. Thus for any player that

11Player i does not directly care about the net coin profit of the other players, although as the total net coin profit
among all the participants sums to 0, player i receiving more coins is directly linked to the other players receiving fewer
coins.
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reaches round ` without having sent her secret to every other player, it is clearly weakly dominant
to send her secret to the rest of the players in round `.

We must also show that strategies in which P−i = /0 by algorithm termination are not weakly
dominated for player i, including the fact that one such "all-send" strategy does not dominate
any other "all-send" strategy. Let us consider any two arbitrary "all-send" strategies σi,σ

′
i . These

strategies must differ at some round r before the last round `. Then there exists strategy profiles
for the rest of the players σ−i,σ

′
−i such that Ui(σi,σ−i)>Ui(σ

′
i ,σ−i) and Ui(σ

′
i ,σ
′
−i)>Ui(σi,σ

′
−i).

In these strategy profiles, all the other players do not send any messages until round r has passed.
After round r, the players playing σ−i will all send their shares if they are playing against σi, while
the players playing σ ′−i will send their shares if they are playing against σ ′i . Then no "all-send"
strategy is weakly dominated by another "all-send" strategy. If we extend this backwards before
level `, we observe that because it is possible to reach an "all-send" on-path strategy starting from
any information set of any level on the tree before level `, we can see that all "all-send" strategies
survive ` rounds of iterative deletion of weakly dominant strategies.

Let us now consider whether the strategy of opting-out at the setup phase is weakly dominated.
We easily find opposing strategy profiles σ−i for which an "all-send" strategy is higher than the
utility derived from opting out at setup (e.g. all other players opt in at setup but do not fulfill any of
their commitments to send messages, giving player i (n−1)c coins), so "all-send" strategies are not
weakly dominated by opting out at setup in any iteration.

We have already iteratively deleted all strategies that are not either "all-send" strategies or
consist of opting-out at setup. We immediately have under this set of strategies, all players end the
protocol with net zero coins. Then we consider three cases:

1. At least t players opt in during setup. Then none of the players who opted in benefit from
switching to opting out (as they would no longer learn the secret), while players who did not
opt in would benefit from switching to opting in (as they would then learn the secret).

2. Exactly t−1 opt in during setup. Then the players who opted in are indifferent between their
current strategy or switching to opting out, as either way no one learns the secret. The players
who opted out would benefit from switching to opting in, as they would then learn the secret.

3. No greater than t−2 players opt in during setup. Then all players are indifferent between
opting in or opting out, as either way no one learns the secret.

Thus in the final iteration of deleting weakly dominated strategies, "all-send" strategies weakly
dominate opting out at setup. Then strategies that opt in at setup and send one’s secret to all
participants are the only strategies that survive iterated deletion of weakly dominated strategies.
Any strategy profile composed of only "all-send" strategies is a Nash equilibrium.

We can additionally observe that it is sufficient to set `= 1 so that all players will send all other
players their secret shares in one round.

5.4. Notes on coin valuations

While U-1 – U-4 are sufficient to imply that "all-send" strategies are the only strategies surviving
iterated deletion of weakly dominated strategies, it is worth noting that finding a transaction amount
c that allows these utilities to be satisfied in practice is nontrivial. For simplicity of demonstrating
this point, in this section we assume that all players assign the same marginal utility to receiving c
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coins, regardless of the amount of coins they already have and the set of players that have learned
the secret. (We will use the value c to denote this marginal utility.)

Let us consider an arbitrary player i with the following payoffs for protocol outcomes:

• All n players learning the secret: UH

• Only player i receiving output: Uy

• No one receives output: U0

In keeping with the secret-sharing utility setting described previously, we have that Uy >UH >U0.
Let us consider the case that only t players have opted in at setup phase: we effectively have

an n-out-of-n secret sharing with compensation setting. Then we have that, assuming the other
players participate honestly in the protocol, player i receives payoff UH , while if player i opts in but
does not send his secret to anyone, he receives Uy− (n−1)c. Then in order for the protocol to be
dominant-strategy-honest for i, we need that

UH ≥Uy− (n−1)c

=⇒ c≥
Uy−UH

(n−1)

This result seems fairly intuitive: the coin payment that i receives for sending the necessary input to
j must be at least as great as the utility i assigns to denying j the MPC output. Then this payment-
commitment mechanism can be made dominant-strategy-honest simply by making c sufficiently
high that this inequality holds true for all players.

This is nontrivial! Determining whether a given value c is sufficient in this scenario seems to
necessitate determining which player assigns the highest value to Uy−UH – or at least determining
what the highest value is among the players. If the players wish to keep these values private, this
appears to be equivalent to solving Yao’s Millionaires’ Problem... which is a problem solved with
MPC. Even if the players are willing for these values not to be private, the player with the highest
value for Uy−UH has incentive to lie by declaring a lower value, and it’s not clear how a mechanism
for eliciting the true value for this would be made compatible with this protocol.

6. Conclusion
In this work, we have studied various frameworks for t-out-of-n secret sharing under rational players,
as a methodology to replace trusted mediators in computing correlated equilibria. In particular, we
have presented Halpern and Teague’s [18] results, in terms of showing the impossibility of classic
deterministic secret sharing under iterated deletion of weakly dominated strategies in every subgame.
We extend these results to demonstrate that it is similarly impossible to obtain deterministic secret
sharing under a gradual release framework. However, we show that under a compensation framework,
players are rationally motivated to carry out the protocol.

In terms of directions for future research, we have presented in Section 5.4 some key issues
regarding calculating sufficient coin amounts to successfully carry out a compensation scheme;
resolving these issues will be necessary to actually implement a compensation framework among
rational players. Moreover, although we have obtained a positive result towards secret sharing,
this does not necessarily directly extend to rational multiparty computation schemes; it would be
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interesting to analyze which multiparty computation schemes can be rationally carried out assuming
that secret sharing is accomplished using a compensation framework.

Finally, it is important to note that our results use a specific version of iterated deletion of
weakly dominated strategies, in that we restrict ordering to a subgame hierarchy. In general, different
results may be obtained by deleting weakly dominated strategies in different orderings, and it would
be interesting to extend our results in Sections 4.2 and 5.3 to iterated deletion of weakly dominated
strategies without a restriction on order.
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