Parallel algorithms for butterfly computations

Jessica Shi (MIT CSAIL)

Julian Shun (MIT CSAIL)

Outline

- Problem statement + Applications
- ParButterfly framework
 - Parallel butterfly counting
 - Parallel butterfly peeling
- Implementation + Evaluation
- Conclusion + Future work

Graph processing

Graphs are ubiquitous

https://gizmodo.com/fascinating-graphic-shows-who-owns-all-the-major-brands-1599537576

Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a Major Power Outage in the Netherlands

http://bitcoinwiki.co/wp-content/uploads/ censorship-free-social-network-akasha-aimsto-tackle-internet-censorship-with-blockchaintechnology.jpg

Bipartite graphs

Bipartite graphs: Represent relationships between two groups

disease phenome disease genome Ataxia-telangiectasia AR Perineal hypospadias ATM Androgen insensitivity T-cell lymphoblastic leukemia **BRCA**1 Papillary serous carcinoma BRCA2 CDH1 Ovarian cancer GARS HEXB KRAS LMNA MSH2 Pancreatic cancer PIK3CA Wilms tumor TP53 atrophy AD1L Sandhalldisease RAD54L VAPB both disease Charcot-Marie-CHEK2 Amyotrophic lateral sclerosis BSCL2 Silver spastic paraplegia syndrome paraplegia BRIP1 The human disease network

Parallelism

Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Bipartite graphs

• Butterflies = 4-cycles = $K_{2,2}$

Think of these as the bipartite analogue of triangles (K₃) Note: Bipartite graphs contain no triangles

Finding dense subgraphs

Problem: Given a graph G, find dense bipartite subgraphs

Applications:

- Find communities in social networks, websites, etc.
- Discovering protein interactions in computational biology
- Fraud detection in finance (tampered derivatives)

Link spam detection

- Link spam: Create many external links to a spam page, for web search ranking promotion
- Link graph: Webpages are nodes, connected by incoming / outgoing hyperlinks

Dogs wiki

Dog training tips

Professional dog grooming

American kennel club

Link spam detection

- Note: Web communities tend to be dense bipartite subgraphs^[1]
- Web community bipartitions: topics, page creators interested in topics

Tampered derivatives

 Tampered derivatives: Backed by set of assets/loans, tampered to contain many unprofitable (lemon) asset classes^[2]

- How do we find dense subgraphs (in general)?
- Algorithms:
 - K-core
 - Triangle peeling
- How do we find dense bipartite subgraphs?

• K-core: Repeatedly find + delete min degree vertex

Formally: A k-core is an induced subgraph where every vertex has degree at least k

Problem: Bipartite graphs do not contain any triangles

 Butterfly peeling: Repeatedly find + delete vertex containing min # of butterflies^[3]

Outline

 Main goal: Build a framework ParButterfly to count and peel butterflies

- New parallel algorithms for butterfly counting + peeling
- ParButterfly framework with modular settings
 - Tradeoff b/w theoretical bounds + practical speedups
- Comprehensive evaluation
 - Counting outperforms fastest seq algorithms by up to 13.6x
 - Peeling outperforms fastest seq algorithms by up to 10.7x

Important paradigms

- Strong theoretical bounds
 - Work = total # operations = # vertices in graph
 - Span = longest dependency path = longest directed path
 - Running time ≤ (work / # processors) + O(span)
 - Work-efficient = work matches sequential time complexity

Parallel computation graph

https://web.fe.up.pt/~jbarbosa/en/research_par.html

ParButterfly counting framework

How do we count butterflies? (per vertex)

Wedge =
$$P_2$$
 =

How do we count butterflies? (per vertex)

Wedges with the same endpoints form butterflies:

wedges w/endpoints \bigcirc = w = 3

butterflies on each center $\bigcirc = w - 1 = 3 - 1 = 2$

Counting framework so far

1. Retrieve wedges

For each pair of endpoints, count # wedges w

3. Compute butterfly counts

 $+\binom{w}{2}$ for each endpoint +w-1 for each center

One question: How do we aggregate wedges?

(will discuss wedge retrieval after)

Method 1: Semisorting (on endpoints)

Method 1: Semisorting (on endpoints)

Method 2: Hashing (keys = endpoints)

Method 2: Hashing (keys = endpoints)

Method 3: Histogramming (frequencies of endpoints)

Wedge aggregating bounds

Semisorting^[1], hashing^[2], and histogramming^[3] are all workefficient

w = # of wedges O(w) expected work, $O(\log w)$ span whp

- [1] Gu, Shun, Sun, and Blelloch (15)
- [2] Shun and Blelloch (14)
- [3] Dhulipala, Blelloch, and Shun (17)

Counting framework so far

One more way to count wedges: Batching (not with polylogarithmic span, but fast in practice)

Wedge aggregating (batching)

 Main idea: Process a subset of vertices in parallel, finding all wedges where those vertices are endpoints

Counting framework so far

More questions:

How do we retrieve wedges? How many wedges are there?

It depends!

Method 1: Process wedges w/endpoints from one bipartition

(Side) [1]

Is this optimal (min # wedges)? Not always.

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

(Note: Butterfly count remains the same)

 Regardless of which side we pick, butterfly count does not change – only some "useful" wedges create butterflies

5 wedges

2 "useful" wedges = 1 butterfly

2 "useful" wedges = 1 butterfly

Method 2: Degree ranking

Main idea:

Once we obtain all wedges with endpoint v, we do not have to consider wedges with endpoint v again.

Method 2: Degree ranking

- Order vertices by non-increasing degree
- For each vertex v, only consider wedges with endpoint v that is formed by vertices later in the ordering than v

Method 2: Degree ranking

2 wedges

Method 2: Degree ranking

2 wedges

Retrieve wedges

Method 2: Degree ranking

We only processed 4 wedges!

Degree ranking

- # wedges processed using degree order = $O(\alpha m)^{[1]}$
 - α = arboricity/degeneracy (O(\sqrt{m}))
 - m = # edges
- Therefore: (using work-efficient options)

Ranking vertices = O(m) expected work, O(log m) span whp Retrieving wedges = O(α m) expected work, O(log m) span whp Counting wedges = O(α m) expected work, O(log m) span whp Computing butterfly counts = O(α m) expected work, O(log m) span whp

Total = $O(\alpha m)$ expected work, $O(\log m)$ span whp

Other rankings

- Approximate degree order
 - Log degree
- Complement degeneracy order
 - Ordering given by repeatedly finding + deleting greatest degree vertex
- Approximate complement degeneracy order
 - Complement degeneracy order, but using log degree

We show these are all work-efficient

Counting framework

 $O(\alpha m)$ expected work, $O(\log m)$ span whp

ParButterfly peeling framework

How do we peel butterflies?

Goal: Iteratively remove all vertices with min butterfly count

Subgoal 1: A way to keep track of vertices with min butterfly count

Subgoal 2: A way to update butterfly counts after peeling vertices

Note: We've already done subgoal 2 in counting framework

For subgoal 1, we give a work-efficient batch-parallel Fibonacci heap which supports batch insertions/decrease-keys (see paper).

Peeling framework

1. Obtain butterfly counts

2. Iteratively remove vertices with min butterfly count

- Use batch-parallel Fibonacci heap to find vertex set S
- Count wedges with endpoints in S
 - Semisort, Hash, Histogram, Batch
- Compute updated butterfly counts

We show this algorithm is work-efficient (with respect to peeling complexity)

Evaluation

Environment

- m5d.24xlarge AWS EC2 instance: 48 cores (2-way hyper-threading), 384 GiB main memory
- Cilk Plus^[1] work-stealing scheduler
- Koblenz Network Collection (KONECT) bipartite graphs
- Experiments for the different modular options in our framework
- Some modifications:
 - Julienne^[2] instead of batch-parallel Fibonacci heap
 - Cannot hold all wedges in memory batch wedge retrieval
 - [1] Leiserson (10)
 - [2] Dhulipala, Blelloch, and Shun (17)

Counting:

Best aggregation method: Batching

Counting:

Best ranking method: Approx Complement Degeneracy / Approx Degree

Butterfly counting results

- 6.3 13.6x speedups over best seq implementations^{[1] [2]}
- 349.6 5169x speedups over best parallel implementations^[3]
 - Due to work-efficiency
- 7.1 38.5x self-relative speedups

Up to 1.7x additional speedup using a cache-optimization^[4]

- [1] Sanei-Mehri, Sariyuce, Tirthapura (18)
- [2] ESCAPE: Pinar, Seshadhri, Vishal (17)
- [3] PGD: Ahmed, Neville, Rossi, Duffield, and Wilke (17)
- [4] Wang, Lin, Qin, Zhang, and Zhang (19)

Peeling:

Best aggregation method: Histogramming

Butterfly peeling results

- 1.3 30696x speedups over best seq implementations^[1]
 - Depends heavily on peeling complexity
 - Largest speedup due to better work-efficiency for some graphs
- Up to 10.7x self-relative speedups
 - No self-relative speedups if small # of vertices peeled

Conclusion

Conclusion

- New parallel algorithms for butterfly counting/peeling
- Modular ParButterfly framework w/ranking + aggregation options
- Strong theoretical bounds + high parallel scalability
- Github: https://github.com/jeshi96/parbutterfly

Limitations

- Butterfly peeling is P-complete (limited speedups)
- Work-efficient butterfly counting is not the fastest in practice
 - Reducing space usage in butterfly counting
- Not easily generalized to other subgraphs

Future Work

- Cycle counting (for $k \ge 6$)^[1, 2, 3]
- Dynamic/Streaming subgraph counting^[4, 5]
- Clique counting / Nucleus decomposition^[6]
- Objective function for butterfly peeling^[7]
- GraphIt extensions
- Hypergraph algorithms

```
[1] Bera, Pashanasangi, Seshadhri (19)
```

- [2] Kowalik (03)
- [3] Pinar, Seshadhri, Vishal (16)
- [4] Sanei-Mehri, Zhang, Sariyuce, Tirthapura (19)
- [5] Eppstein, Spiro (09)

```
[6] Sariyuce, Seshadhri, Pinar, Catalyurek (15)
```

[7] Tsourakakis (15)

Thank you

Deriving αm

- # wedges = $\sum_{x \in V} \sum_{y \in N_x(x)} deg_x(y)$
 - Where $N_x(y)$ and $deg_x(y)$ refer to neighbors / degree of y considering vertices with rank > rank(x)

(where u has higher degree (lower rank) than v)

$$\leq \sum_{(u,v)\in E} \min(\deg(u), \deg(v))$$

$$\leq \sum_{\text{forest } F} \sum_{(u,v)\in F} \min(\deg(u), \deg(v))$$

$$\leq \sum_{\text{forest } F} \sum_{v\in V} \deg(v)$$

$$= O(\alpha m)$$

Priority queue for butterfly counts

Batch-parallel Fibonacci heap:

- k insertions: O(k) amortized expected work, $O(\log(n+k))$ span whp
- k decrease-keys: O(k) amortized work, $O(\log^2 n)$ span whp
- delete-min: O(log n) amortized expected work, O(log n) span whp

Analysis follows directly from serial Fibonacci heap analysis, except marks are integers instead of booleans

Additionally, we use a parallel hash table to maintain buckets for butterfly peeling

Peeling framework bounds

• By vertex: $(\rho_v = \text{number of peeling rounds across all vertices})$ • O(min(max-b_v, $\rho_v \log m$) + \sum degree(v)²) expected work, O($\rho_v \log^2 m$) span whp, O($n^2 + \text{max-b}_v$) space

• By edge: $(\rho_e = \text{number of peeling rounds across all edges})$ $O(\text{min(max-b}_e, \rho_e \log m) + \sum_{(u,v)} \sum_{u' \in N(u)} \text{min(degree}(u), degree}(u')))$ expected work, $O(\rho_e \log^2 m)$ span whp, $O(m + \text{max-b}_e)$ space

(Using batch-parallel Fibonacci heap and Julienne)

Peeling framework bounds

• By vertex: $(\rho_v = \text{number of peeling rounds across all vertices})$ $O(\rho_v \log m + \sum \text{degree}(v)^2)$ expected work, $O(\rho_v \log^2 m)$ span whp, $O(n^2)$ space

• By edge: $(\rho_e = \text{number of peeling rounds across all edges})$ $O(\rho_e \log m + \sum_{(u,v)} \sum_{u' \in N(u)} \min(\text{degree}(u), \text{degree}(u')))$ expected work, $O(\rho_e \log^2 m)$ span whp, O(m) space

(Using batch-parallel Fibonacci heap)

Peeling framework bounds (Storing all wedges)

• By vertex: $(\rho_v = \text{number of peeling rounds across all vertices})$ $O(\rho_v \log m + b)$ expected work, $O(\rho_v \log^2 m)$ span whp, $O(\alpha m)$ space

• By edge: $(\rho_e = \text{number of peeling rounds across all edges})$ $O(\rho_e \log m + b)$ expected work, $O(\rho_e \log^2 m)$ span whp, $O(\alpha m)$ space

(Using batch-parallel Fibonacci heap)

Peeling framework bounds (Storing all wedges)

• By vertex: $(\rho_v = \text{number of peeling rounds across all vertices})$ O(b) expected work, $O(\rho_v \log m)$ span whp, $O(\alpha m + \text{max-b}_v)$ space

• By edge: (ρ_e = number of peeling rounds across all edges) O(b) expected work, O(ρ_e log m) span whp, O(αm + max-b_e) space

(Using Julienne)

Sampling

 Edge sparsification: Keep each edge independently w/probability p

 Colorful sparsification: Assign a random color [1, ..., 1/p] to each vertex + keep each edge if the endpoints match

Scalability (Per vertex counting)

Sampling

Wedge Aggregation (Per vertex counting with cache optimization)

