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Graph processing

e Graphs are ubiquitous
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Bipartite graphs

e Bipartite graphs: Represent relationships between two groups
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Parallelism

e Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP



Bipartite graphs

e Butterflies = 4-cycles =K, ,

Think of these as the bipartite analogue of triangles (K;)
Note: Bipartite graphs contain no triangles




Finding dense subgraphs

e Problem: Given a graph G, find dense bipartite subgraphs

e Applications:
« Find communities in social networks, websites, etc.

» Discovering protein interactions in computational biology

» Fraud detection in finance (tampered derivatives)




Link spam detection

e Link spam: Create many external links to a spam page, for web
search ranking promotion

e Link graph: Webpages are nodes, connected by incoming /
outgomg hyperlmks
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Link spam detection

e Note: Web communities tend to be dense bipartite subgraphs!!
e Web community bipartitions: topics, page creators interested in
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[1] Kumar, Raghavan, Rajagopalan, Tomkins (99)




Tampered derivatives

e Tampered derivatives: Backed by set of assets/loans, tampered
to contain many unprofitable (lemon) asset classes!?]

Derivatives Asset classes

U Tampered Lemon Q
Lemon Q

[2] Arora, Barak, Brunnermeier, Ge (09)




How do we find dense subgraphs?

e How do we find dense subgraphs (in general)?
e Algorithms:

o K-core

» Triangle peeling

e How do we find dense bipartite subgraphs?




How do we find dense subgraphs?

e K-core: Repeatedly find + delete min degree vertex

2C0re<i iacore ( g——)

Formally: A k-core is an induced subgraph where every vertex has degree at least k




How do we find dense subgraphs?

e Problem with k-core: e RN

Angela Merkel \




How do we find dense subgraphs?

e Triangle peeling: Repeatedly find + delete vertex contained

<

3-triangle-cores

Pl




How do we find dense subgraphs?

e Problem: Bipartite graphs do not contain any triangles

e Butterfly peeling: Repeatedly find + delete vertex containing min
# of butterflies!3]

[3] Sariyuce and Pinar (18)



e Vain goal: Build a framework ParButterfly to count and peel
butterflies

e New parallel algorithms for butterfly counting + peeling

e ParButterfly framework with modular settings
« Tradeoff b/w theoretical bounds + practical speedups

e Comprehensive evaluation
« Counting outperforms fastest seq algorithms by up to 13.6x
» Peeling outperforms fastest seq algorithms by up to 10.7x



Important paradigms

e Strong theoretical bounds Parallel computation graph
o Work = total # operations = # vertices
in graph
« Span = longest dependency path =
longest directed path

o Running time < (work / #
processors) + O(span)

o Work-efficient = work matches
sequential time complexity

https://web.fe.up.pt/~jbarbosa/en/research_par.html



ParButterfly counting framework



How do we count butterflies? (per vertex)

Wedge =P, =

Endpoints < > <+«— Center




How do we count butterflies? (per vertex)

Wedge =P, = >

Wedges with the same endpoints form butterflies:

# wedges w/endpoints ©® ® =w =3

# butterflies on endpoints @ @ = (VZ") — (2) =3

# butterflies on each center ® =w—-—1=3-1=2




Counting framework so far

1. Retrieve wedges

2. Aggregate wedges

For each pair of endpoints, count # wedges w

3. Compute butterfly counts

+ (VZ") for each endpoint + w — 1 for each center

One question: How do we aggregate wedges?
(will discuss wedge retrieval after)



Wedge aggregating

e Method 1: Semisorting (on endpoints)
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Wedge aggregating

e Method 1: Semisorting (on endpoints)
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Wedge aggregating

e Method 2: Hashing (keys = endpoints)

e e e e D >
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Wedge aggregating

e Method 2: Hashing (keys = endpoints)
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Wedge aggregating

e Method 3: Histogramming (frequencies of endpoints)

e e e e D >
!

o0 =1




Wedge aggregating bounds

Semisortingt, hashing!?l, and histogramming®! are all work-
efficient

w = # of wedges
O(w) expected work, O(log w) span whp

[1] Gu, Shun, Sun, and Blelloch (15)
[2] Shun and Blelloch (14)
[3] Dhulipala, Blelloch, and Shun (17)



Counting framework so far

1. Retrieve wedges

2. Aggregate wedges

Semisort, Hash Histogram

A 4

3. Compute butterfly counts

One more way to count wedges: Batching
(not with polylogarithmic span, but fast in practice)



Wedge aggregating (batching)

e Main idea: Process a subset of vertices in parallel, finding all
wedges where those vertices are endpoints

>>l' B N

!

Array @ of size |V]: Array @ of size |V|:




Counting framework so far

1. Retrieve wedges

2. Aggregate wedges

Semisort, Hash Histogram, Batch

A 4

3. Compute butterfly counts

More questions:

How do we retrieve wedges?
How many wedges are there?



't depends!

e Method 1: Process wedges w/endpoints from one bipartition
(Side) 1

6 wedges 5 wedges

Is this optimal (min # wedges)? Not always.
[1] Sanei-Mehri, Sariyuce, Tirthapura (18)



(Note: Butterfly count remains the same)

e Regardless of which side we pick, butterfly count does not

change — only some “useful” wedges create butterflies

6 wedges

2 "“useful” wedges =1 butterfly

5 wedges

2 "“useful” wedges =1 butterfly



Retrieve wedges

e Method 2: Degree ranking

Main idea:

Once we obtain all wedges with endpoint v, we do not have to consider
wedges with endpoint v again.

[1] Chiba and Nishizeki (85)



Retrieve wedges

e Method 2: Degree ranking

1. Order vertices by non-increasing degree

2. For each vertex v, only consider wedges with endpoint v that is
formed by vertices later in the ordering than v

[1] Chiba and Nishizeki (85)



Retrieve wedges

e Method 2: Degree ranking

4 1
5 3
6 7/
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Retrieve wedges

e Method 2: Degree ranking

4

5 @— 3
6@ 7
2 @ 3

2 wedges




Retrieve wedges

e Method 2: Degree ranking

6@ ® 7 6® @7

® 8 @ 3

We only processed 4 wedges!




Degree ranking

o # wedges processed using degree order = O(am) 1

. o = arboricity/degeneracy (0(Vm))
o« M =# edges
e Therefore: (using work-efficient options)

Ranking vertices = O(m) expected work, O(log m) span whp
Retrieving wedges = O(am) expected work, O(log m) span whp
Counting wedges = O(am) expected work, O(log m) span whp

Computing butterfly counts = O(am) expected work, O(log m) span whp

Total = O(am) expected work, O(log m) span whp
[1] Chiba and Nishizeki (85)



Other rankings

e Approximate degree order
» Log degree

e Complement degeneracy order

« Ordering given by repeatedly finding + deleting greatest degree vertex

e Approximate complement degeneracy order

« Complement degeneracy order, but using log degree

We show these are all work-efficient



Counting framework

1. Rank vertices

Side, Degree, Approx Degree, Co Degeneracy, Approx Co Degeneracy

A 4

2. Retrieve wedges

3. Aggregate wedges

Semisort, Hash Histogram, Batch

A 4

4. Compute butterfly counts

O(am) expected work, O(log m) span whp



ParButterfly peeling framework



How do we peel butterflies?

e Goal: Iteratively remove all vertices with min butterfly count

Subgoal 1: A way to keep track of vertices with min butterfly count
Subgoal 2: A way to update butterfly counts after peeling vertices

Note: We've already done subgoal 2 in counting framework

For subgoal 1, we give a work-efficient batch-parallel Fibonacci heap which
supports batch insertions/decrease-keys (see paper).



Peeling framework

1. Obtain butterfly counts

2. lteratively remove vertices with min butterfly count

e Use batch-parallel Fibonacci heap to find vertex set S
e Count wedges with endpointsin S

o Semisort, Hash, Histogram, Batch
e Compute updated butterfly counts

We show this algorithm is work-efficient
(with respect to peeling complexity)



Fvaluation



Environment

e m5d.24xlarge AWS EC2 instance: 48 cores (2-way hyper-
threading), 384 GiB main memory

e Cilk Plus!*! work-stealing scheduler
e Koblenz Network Collection (KONECT) bipartite graphs
e Experiments for the different modular options in our framework

e Some modifications:
« Juliennel?l instead of batch-parallel Fibonacci heap

» Cannot hold all wedges in memory — batch wedge retrieval

[1] Leiserson (10)
[2] Dhulipala, Blelloch, and Shun (17)



Best aggregation method: Batching
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Best ranking method: Approx Complement Degeneracy / Approx Degree
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Butterfly counting results

e 6.3 —13.6x speedups over best seq implementations!! (2]
e 349.6 — 5169x speedups over best parallel implementations!3!

» Due to work-efficiency

e /.1 —38.5x self-relative speedups

e Up to 1.7x additional speedup using a cache-optimization!*!

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

[2] ESCAPE: Pinar, Seshadhri, Vishal (17)

[3] PGD: Ahmed, Neville, Rossi, Duffield, and Wilke (17)
[4] Wang, Lin, Qin, Zhang, and Zhang (19)



Best aggregation method: Histogramming
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Butterfly peeling results

e 1.3 —30696x speedups over best seq implementations!!!
» Depends heavily on peeling complexity

» Largest speedup due to better work-efficiency for some graphs

e Up to 10.7x self-relative speedups

» No self-relative speedups if small # of vertices peeled

[1] Sariyuce and Pinar (18)



Conclusion



Conclusion

e New parallel algorithms for butterfly counting/peeling

e Modular ParButterfly framework w/ranking + aggregation
options

e Strong theoretical bounds + high parallel scalability

e Github: https://github.com/jeshi96/parbutterfly



https://github.com/jeshi96/parbutterfly

e Butterfly peeling is P-complete (limited speedups)
e Work-efficient butterfly counting is not the fastest in practice

» Reducing space usage in butterfly counting

e Not easily generalized to other subgraphs




e Cycle counting (for k > 6)% 2.3l

e Dynamic/Streaming subgraph counting® >
e Clique counting / Nucleus decomposition!®
e Objective function for butterfly peeling!’]

e Graphlt extensions

e Hypergraph algorithms

[1] Bera, Pashanasangi, Seshadhri (19) [6] Sariyuce, Seshadhri, Pinar, Catalyurek (15)
[2] Kowalik (03) [7] Tsourakakis (15)

[3] Pinar, Seshadhri, Vishal (16)

[4] Sanei-Mehri, Zhang, Sariyuce, Tirthapura (19)

[5] Eppstein, Spiro (09)



Thank you



Deriving am

o #wedges = ey Dyen, (x) 4€9x (V)

« Where N,.(y) and deg, (y) refer to neighbors / degree of y considering vertices
with rank > rank(x)

< z min(deg(u),deg(v))

(u,v)€EE

® >® ®
%

u
(where u has higher degree < Z z min(deg(u) , deg(v))

(lower rank) than v)
forest F (u,v)€eF

< Z Zdeg(v)

forest F vev

= 0(am)



Priority queue for butterfly counts

Batch-parallel Fibonacci heap:
o kinsertions: O(k) amortized expected work, O(log(n+k)) span whp
» k decrease-keys: O(k) amortized work, O(log? n) span whp
o delete-min: O(log n) amortized expected work, O(log n) span whp

Analysis follows directly from serial Fibonacci heap analysis, except marks
are integers instead of booleans

Additionally, we use a parallel hash table to maintain buckets for butterfly peeling



Peeling framework bounds

e By vertex: (p, = number of peeling rounds across all vertices)

O(min(max-b,, p, log m) + > degree(v)?) expected work, O(p, log*
m) span whp, O(n% + max-b,) space

e By edge: (p. = number of peeling rounds across all edges)

O(min(max-b,, p. log m) + 3, ) 2wenw) Min(degree(u), degree(u’)))
expected work, O(p, log? m) span whp, O(m + max-b,) space

(Using batch-parallel Fibonacci heap and Julienne)



Peeling framework bounds

e By vertex: (p, = number of peeling rounds across all vertices)

O(p, log m + > degree(v)?) expected work, O(p, log? m) span whp,
O(n?) space

e By edge: (p. = number of peeling rounds across all edges)

O(p log m+ 3, ) 2wenw Min(degree(u), degree(u’))) expected
work, O(p, log? m) span whp, O(m) space

(Using batch-parallel Fibonacci heap)



Peeling framework bounds (Storing all wedges)

e By vertex: (p, = number of peeling rounds across all vertices)

O(p, log m + b) expected work, O(p, log? m) span whp, O(am)
space

e By edge: (p. = number of peeling rounds across all edges)

O(p, log m + b) expected work, O(p, log? m) span whp, O(am)
space

(Using batch-parallel Fibonacci heap)



Peeling framework bounds (Storing all wedges)

e By vertex: (p, = number of peeling rounds across all vertices)
O(b) expected work, O(p, log m) span whp, O(am + max-b,) space

e By edge: (p. = number of peeling rounds across all edges)

O(b) expected work, O(p, log m) span whp, O(am + max-b,) space

(Using Julienne)



Sampling

e Edge sparsification: Keep each edge independently
w/probability p

e Colorful sparsification: Assign a random color [1, ..., 1/p] to each
vertex + keep each edge if the endpoints match

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)



Scalability (Per vertex counting
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Sampling
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Wedge Aggregation (Per vertex counting with cache optimization)
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