Parallel algorithms for
butterfly computations

Jessica Shi (MIT CSAIL)
Julian Shun (MIT CSAIL)

e Problem statement + Applications
e ParButterfly framework

o Parallel butterfly counting
o Parallel butterfly peeling

e Implementation + Evaluation

e Conclusion + Future work

Graph processing

e Graphs are ubiquitous

T8S
INT 9 o

“ am o S EsPN2 ESPN CLASSIC
®--...
BOOME;ANG @ _@----~® ADULT SWiM Q"‘,E'SPN
- CARTOON 4
C) o LRFASAS SUNDANCE

HBO " AT A ‘ ; @ IFC
~] . 4 9
o R @ HEARST ke

wB e ok
....cs: WE TV

CNN

CBS SPORTS C:S -l .
® ' . HISTORY AMC
5 o .
. 7 oW MP » @ \ BIO
$17.2 Billion* JSEEEEREEEES MILITARY HISTORY
CBS® | s
. R LIFETIME
$14.1 Billion*
@ WEATHER
2 ABC FAMILY . "® asc ®
4 ’ " ABC ", ENTERTAINMENT -~ @ MSNBC
4 ABC DAYTIME it
SHOWTIME AJC RS °--- o
Aol NBC NEWS
_ @ STARZ @_ “® s
SPIKE TV 3
o BET ENCORE @ - CHILLER
CMT@-=":: X
- ~® VH1 .
COMEDY CENTRAL ' MTV @ MOVIEPLEX @ o BAAYO
=, NICKELODEON TELEMUNDO
LOGO

https://gizmodo.com/fascinating-graphic-shows-who-owns-all-the-major-
brands-1599537576

m

o)
T

Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a
Major Power Outage in the Netherlands

http://bitcoinwiki.co/wp-content/uploads/
censorship-free-social-network-akasha-aims-
to-tackle-internet-censorship-with-blockchain-
technology.jpg

Bipartite graphs

e Bipartite graphs: Represent relationships between two groups

disease phenome disease genome

Ataxia-telangiectasia
AR

Nino Rota Perineal hypospadias
Androgen insensitivity o ATM
Vyacheslav Ovchinnikov T-cell lymphabl@stic Teukemia ACAT
La dolce vita Papillary se& carcinoma ’
(1960) Eduard Artemev . 'ﬁ 7 77~ BRoAz
ro: cer
8% Francis Ford Coppola ; P - COH1.
(1963) Ov o , GARS
Andrey Rublyov Frederico Fellini L a , .-
(1966) A : ‘ : /
ndrei Tarkovsky >
The Godfather KRAS
(1972) Ennio Flaiano v R
R Tullio Pinell N il
Part Il (1974) —
Zerkalo Mario Puzo Wilni§fumor S
VEra) John Milius smnam‘azmphy_ , il
Stalker Sandnd@: : -
(1979) Andrey Konchalovskiy ?poz.f:::e -
Apoc(allyép;sge) Now Aleksandr Misharin Charcot Maifpon diseade -
Arkadiy Strugatskiy USGrS |temS Amyou'ophi.al sclerosis -
) . . BSCL2
Boris Strugatskiy Silver spastic p::egxa syndrome \
. . . Spastic at araplegia -
Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations ~ BiPartite Graph Neural Networks for Efficient Node BRIP1

Representation Learning Thgaﬁﬁm.aﬁrﬂ?sease network

Parallelism

e Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Bipartite graphs

e Butterflies = 4-cycles =K, ,

Think of these as the bipartite analogue of triangles (K;)
Note: Bipartite graphs contain no triangles

Finding dense subgraphs

e Problem: Given a graph G, find dense bipartite subgraphs

e Applications:
« Find communities in social networks, websites, etc.

» Discovering protein interactions in computational biology

» Fraud detection in finance (tampered derivatives)

Link spam detection

e Link spam: Create many external links to a spam page, for web
search ranking promotion

e Link graph: Webpages are nodes, connected by incoming /
outgomg hyperlmks

V‘“ KEN/p

6‘
)
H

5‘
0"/VD ED \Q’%

/o

American kennel cIub

Corgi blogger
@
rofessional dog grooming @ Cats of NYC

Dogs wiki

I‘I‘\ME,q
WM

Dog training tips

Link spam detection

e Note: Web communities tend to be dense bipartite subgraphs!!
e Web community bipartitions: topics, page creators interested in

Topics Page-creators AN KEN,

FAY) Y
. Ly oY
Dogs wiki American kennel club ‘.3.“5

\g
" X
m..{{«\q ED“}E_._.

Dog training tips Corgi blogger

Professional dog grooming @ Catsof NYC '

[1] Kumar, Raghavan, Rajagopalan, Tomkins (99)

Tampered derivatives

e Tampered derivatives: Backed by set of assets/loans, tampered
to contain many unprofitable (lemon) asset classes!?]

Derivatives Asset classes

U Tampered Lemon Q
Lemon Q

[2] Arora, Barak, Brunnermeier, Ge (09)

How do we find dense subgraphs?

e How do we find dense subgraphs (in general)?
e Algorithms:

o K-core

» Triangle peeling

e How do we find dense bipartite subgraphs?

How do we find dense subgraphs?

e K-core: Repeatedly find + delete min degree vertex

2C0re<i iacore (g——)

Formally: A k-core is an induced subgraph where every vertex has degree at least k

How do we find dense subgraphs?

e Problem with k-core: e RN

Angela Merkel \

How do we find dense subgraphs?

e Triangle peeling: Repeatedly find + delete vertex contained

<

3-triangle-cores

Pl

How do we find dense subgraphs?

e Problem: Bipartite graphs do not contain any triangles

e Butterfly peeling: Repeatedly find + delete vertex containing min
of butterflies!3]

[3] Sariyuce and Pinar (18)

e Vain goal: Build a framework ParButterfly to count and peel
butterflies

e New parallel algorithms for butterfly counting + peeling

e ParButterfly framework with modular settings
« Tradeoff b/w theoretical bounds + practical speedups

e Comprehensive evaluation
« Counting outperforms fastest seq algorithms by up to 13.6x
» Peeling outperforms fastest seq algorithms by up to 10.7x

Important paradigms

e Strong theoretical bounds Parallel computation graph
o Work = total # operations = # vertices
in graph
« Span = longest dependency path =
longest directed path

o Running time < (work / #
processors) + O(span)

o Work-efficient = work matches
sequential time complexity

https://web.fe.up.pt/~jbarbosa/en/research_par.html

ParButterfly counting framework

How do we count butterflies? (per vertex)

Wedge =P, =

Endpoints < > <+«— Center

How do we count butterflies? (per vertex)

Wedge =P, = >

Wedges with the same endpoints form butterflies:

wedges w/endpoints ©® ® =w =3

butterflies on endpoints @ @ = (VZ") — (2) =3

butterflies on each center ® =w—-—1=3-1=2

Counting framework so far

1. Retrieve wedges

2. Aggregate wedges

For each pair of endpoints, count # wedges w

3. Compute butterfly counts

+ (VZ") for each endpoint + w — 1 for each center

One question: How do we aggregate wedges?
(will discuss wedge retrieval after)

Wedge aggregating

e Method 1: Semisorting (on endpoints)

e e e e D >
!

Wedge aggregating

e Method 1: Semisorting (on endpoints)

e
!
>

Wedge aggregating

e Method 2: Hashing (keys = endpoints)

e e e e D >
!

Wedge aggregating

e Method 2: Hashing (keys = endpoints)

e e e e D >
!

eSS ST

Wedge aggregating

e Method 3: Histogramming (frequencies of endpoints)

e e e e D >
!

o0 =1

Wedge aggregating bounds

Semisortingt, hashing!?l, and histogramming®! are all work-
efficient

w = # of wedges
O(w) expected work, O(log w) span whp

[1] Gu, Shun, Sun, and Blelloch (15)
[2] Shun and Blelloch (14)
[3] Dhulipala, Blelloch, and Shun (17)

Counting framework so far

1. Retrieve wedges

2. Aggregate wedges

Semisort, Hash Histogram

A 4

3. Compute butterfly counts

One more way to count wedges: Batching
(not with polylogarithmic span, but fast in practice)

Wedge aggregating (batching)

e Main idea: Process a subset of vertices in parallel, finding all
wedges where those vertices are endpoints

>>l' B N

!

Array @ of size |V]: Array @ of size |V|:

Counting framework so far

1. Retrieve wedges

2. Aggregate wedges

Semisort, Hash Histogram, Batch

A 4

3. Compute butterfly counts

More questions:

How do we retrieve wedges?
How many wedges are there?

't depends!

e Method 1: Process wedges w/endpoints from one bipartition
(Side) 1

6 wedges 5 wedges

Is this optimal (min # wedges)? Not always.
[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

(Note: Butterfly count remains the same)

e Regardless of which side we pick, butterfly count does not

change — only some “useful” wedges create butterflies

6 wedges

2 "“useful” wedges =1 butterfly

5 wedges

2 "“useful” wedges =1 butterfly

Retrieve wedges

e Method 2: Degree ranking

Main idea:

Once we obtain all wedges with endpoint v, we do not have to consider
wedges with endpoint v again.

[1] Chiba and Nishizeki (85)

Retrieve wedges

e Method 2: Degree ranking

1. Order vertices by non-increasing degree

2. For each vertex v, only consider wedges with endpoint v that is
formed by vertices later in the ordering than v

[1] Chiba and Nishizeki (85)

Retrieve wedges

e Method 2: Degree ranking

4 1
5 3
6 7/
2 @ 8

2 wedges

@8

Retrieve wedges

e Method 2: Degree ranking

4

5 @— 3
6@ 7
2 @ 3

2 wedges

Retrieve wedges

e Method 2: Degree ranking

6@ ® 7 6® @7

® 8 @ 3

We only processed 4 wedges!

Degree ranking

o # wedges processed using degree order = O(am) 1

. o = arboricity/degeneracy (0(Vm))
o« M =# edges
e Therefore: (using work-efficient options)

Ranking vertices = O(m) expected work, O(log m) span whp
Retrieving wedges = O(am) expected work, O(log m) span whp
Counting wedges = O(am) expected work, O(log m) span whp

Computing butterfly counts = O(am) expected work, O(log m) span whp

Total = O(am) expected work, O(log m) span whp
[1] Chiba and Nishizeki (85)

Other rankings

e Approximate degree order
» Log degree

e Complement degeneracy order

« Ordering given by repeatedly finding + deleting greatest degree vertex

e Approximate complement degeneracy order

« Complement degeneracy order, but using log degree

We show these are all work-efficient

Counting framework

1. Rank vertices

Side, Degree, Approx Degree, Co Degeneracy, Approx Co Degeneracy

A 4

2. Retrieve wedges

3. Aggregate wedges

Semisort, Hash Histogram, Batch

A 4

4. Compute butterfly counts

O(am) expected work, O(log m) span whp

ParButterfly peeling framework

How do we peel butterflies?

e Goal: Iteratively remove all vertices with min butterfly count

Subgoal 1: A way to keep track of vertices with min butterfly count
Subgoal 2: A way to update butterfly counts after peeling vertices

Note: We've already done subgoal 2 in counting framework

For subgoal 1, we give a work-efficient batch-parallel Fibonacci heap which
supports batch insertions/decrease-keys (see paper).

Peeling framework

1. Obtain butterfly counts

2. lteratively remove vertices with min butterfly count

e Use batch-parallel Fibonacci heap to find vertex set S
e Count wedges with endpointsin S

o Semisort, Hash, Histogram, Batch
e Compute updated butterfly counts

We show this algorithm is work-efficient
(with respect to peeling complexity)

Fvaluation

Environment

e m5d.24xlarge AWS EC2 instance: 48 cores (2-way hyper-
threading), 384 GiB main memory

e Cilk Plus!*! work-stealing scheduler
e Koblenz Network Collection (KONECT) bipartite graphs
e Experiments for the different modular options in our framework

e Some modifications:
« Juliennel?l instead of batch-parallel Fibonacci heap

» Cannot hold all wedges in memory — batch wedge retrieval

[1] Leiserson (10)
[2] Dhulipala, Blelloch, and Shun (17)

Best aggregation method: Batching
6

SSort ='Hash ['Hist “Batch

5.9
5 N

Mulitplicative slowdown
j N &0 =~
Ot DN Ot W Ot = Ot
|
2

P—l

=
Ut

7227
[

NEIRI = =| (]
\ ,
0 N

discogs enwiki web
(fastest: 0.93 s) (fastest: 11.75 s) (fastest: 15.89 s)

Best ranking method: Approx Complement Degeneracy / Approx Degree

100 |8s Side 12Co Degen \
‘tApprox Co Degen 72 Degree

05 |8 Approx Degree
g 90~ = 4
215
= -
=
~ 10 = =
L — —
= S S
S5
=
E oL NAnnk NHmzm e
= discogs enwiki web

(fastest: 1.09 s) (fastest: 11.75s) (fastest: 15.89 s)

Butterfly counting results

e 6.3 —13.6x speedups over best seq implementations!! (2]
e 349.6 — 5169x speedups over best parallel implementations!3!

» Due to work-efficiency

e /.1 —38.5x self-relative speedups

e Up to 1.7x additional speedup using a cache-optimization!*!

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

[2] ESCAPE: Pinar, Seshadhri, Vishal (17)

[3] PGD: Ahmed, Neville, Rossi, Duffield, and Wilke (17)
[4] Wang, Lin, Qin, Zhang, and Zhang (19)

Best aggregation method: Histogramming

18 7 NSort [Hash ' Hist “Batch
6
=
Z 14
.,
g 12
o 10
3
£ 6
= — —
= 40 - s
2 = 7 | N =
E 7 \ Q % \ % H
dblp github discogs discogs_style delicious

(fastest: 0.91 s) (fastest: 0.87 s) (fastest: 26.0 s) (fastest: 0.483 s) (fastest: 853 s)

Butterfly peeling results

e 1.3 —30696x speedups over best seq implementations!!!
» Depends heavily on peeling complexity

» Largest speedup due to better work-efficiency for some graphs

e Up to 10.7x self-relative speedups

» No self-relative speedups if small # of vertices peeled

[1] Sariyuce and Pinar (18)

Conclusion

Conclusion

e New parallel algorithms for butterfly counting/peeling

e Modular ParButterfly framework w/ranking + aggregation
options

e Strong theoretical bounds + high parallel scalability

e Github: https://github.com/jeshi96/parbutterfly

https://github.com/jeshi96/parbutterfly

e Butterfly peeling is P-complete (limited speedups)
e Work-efficient butterfly counting is not the fastest in practice

» Reducing space usage in butterfly counting

e Not easily generalized to other subgraphs

e Cycle counting (for k > 6)% 2.3l

e Dynamic/Streaming subgraph counting® >
e Clique counting / Nucleus decomposition!®
e Objective function for butterfly peeling!’]

e Graphlt extensions

e Hypergraph algorithms

[1] Bera, Pashanasangi, Seshadhri (19) [6] Sariyuce, Seshadhri, Pinar, Catalyurek (15)
[2] Kowalik (03) [7] Tsourakakis (15)

[3] Pinar, Seshadhri, Vishal (16)

[4] Sanei-Mehri, Zhang, Sariyuce, Tirthapura (19)

[5] Eppstein, Spiro (09)

Thank you

Deriving am

o #wedges = ey Dyen, (x) 4€9x (V)

« Where N,.(y) and deg, (y) refer to neighbors / degree of y considering vertices
with rank > rank(x)

< z min(deg(u),deg(v))

(u,v)€EE

® >® ®
%

u
(where u has higher degree < Z z min(deg(u) , deg(v))

(lower rank) than v)
forest F (u,v)€eF

< Z Zdeg(v)

forest F vev

= 0(am)

Priority queue for butterfly counts

Batch-parallel Fibonacci heap:
o kinsertions: O(k) amortized expected work, O(log(n+k)) span whp
» k decrease-keys: O(k) amortized work, O(log? n) span whp
o delete-min: O(log n) amortized expected work, O(log n) span whp

Analysis follows directly from serial Fibonacci heap analysis, except marks
are integers instead of booleans

Additionally, we use a parallel hash table to maintain buckets for butterfly peeling

Peeling framework bounds

e By vertex: (p, = number of peeling rounds across all vertices)

O(min(max-b,, p, log m) + > degree(v)?) expected work, O(p, log*
m) span whp, O(n% + max-b,) space

e By edge: (p. = number of peeling rounds across all edges)

O(min(max-b,, p. log m) + 3,) 2wenw) Min(degree(u), degree(u’)))
expected work, O(p, log? m) span whp, O(m + max-b,) space

(Using batch-parallel Fibonacci heap and Julienne)

Peeling framework bounds

e By vertex: (p, = number of peeling rounds across all vertices)

O(p, log m + > degree(v)?) expected work, O(p, log? m) span whp,
O(n?) space

e By edge: (p. = number of peeling rounds across all edges)

O(p log m+ 3,) 2wenw Min(degree(u), degree(u’))) expected
work, O(p, log? m) span whp, O(m) space

(Using batch-parallel Fibonacci heap)

Peeling framework bounds (Storing all wedges)

e By vertex: (p, = number of peeling rounds across all vertices)

O(p, log m + b) expected work, O(p, log? m) span whp, O(am)
space

e By edge: (p. = number of peeling rounds across all edges)

O(p, log m + b) expected work, O(p, log? m) span whp, O(am)
space

(Using batch-parallel Fibonacci heap)

Peeling framework bounds (Storing all wedges)

e By vertex: (p, = number of peeling rounds across all vertices)
O(b) expected work, O(p, log m) span whp, O(am + max-b,) space

e By edge: (p. = number of peeling rounds across all edges)

O(b) expected work, O(p, log m) span whp, O(am + max-b,) space

(Using Julienne)

Sampling

e Edge sparsification: Keep each edge independently
w/probability p

e Colorful sparsification: Assign a random color [1, ..., 1/p] to each
vertex + keep each edge if the endpoints match

[1] Sanei-Mehri, Sariyuce, Tirthapura (18)

Scalability (Per vertex counting

[

2048 | —e— ASort

—&+— Hash
1024 —e— BatchS

—— Sort

AHash

—a— AHist —e— Hist
—a— BatchWA

512

256 |

128 |

64

Time (in seconds)

32

16

1 2 4 8

16 32 48

Number of workers

48h

Sampling

1024 [.
—e— Color (48h threads)

—— Edge (48h threads)
—+— Color (1 thread)
256 | | =+ Edge (1 thread)

g
g 64 | .
k=
e
E 16 :
~

41 |

0 01 02 03 04 05 06 0.7 08 09 1
p

Wedge Aggregation (Per vertex counting with cache optimization)

22 SYASort —ISort ['AHash Hash E
20/ |“7AHist EZHist EiBatchS EEBatchWA
18 -
o =
2 16 -
8 =
2 u —
é 12 - =
20 : - :
= = = e -
s 8 & .
E
= 6 §: 5 =
A = i =117 |
§ . 2008 = = 7 E
2 § _— N / ::::é = 7 = ;:'; 2: = 7 :
\ & N L BB o \ H LE: : i ’ ‘ 7 = i 2, i Z .
0 \ i E_i H [7 H HE § B HEE % 4 H H bl b ﬁ AL HEHE ﬂ R HE H

itwiki* discogs’ livejournal* enwiki® delicious® orkut® wébo
(fastest: 0.14 s) (fastest: 0.83 s) (fastest: 5.58 s) (fastest: 8.31 s) (fastest: 11.93 s) (fastest: 41.57 s) (fastest: 13.63 s)

