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1 Introduction
A fundamental tool in modern data mining is graph and metric clustering, which has wide-ranging
applications including in social network analysis [81], bioinformatics [106], and machine learn-
ing [100]. As the need to analyze larger and larger data sets increases, designing scalable algo-
rithms that can handle billions of edges or points while maintaining fast speed and high quality
becomes crucial. Current infrastructure for large-scale clustering in production settings relies not
only on distributed algorithms with the ability to process trillion-size datasets [23, 202], but also
on shared-memory parallel algorithms with the ability to process billion-size datasets [188]. Impor-
tantly, large distributed clusters are prohibitively expensive in many use-cases, while commodity
multi-core machines are widely available to the average consumer, with much lower per-hour costs
and generous machine sizes of up to 24 TB of memory [1]. Moreover, sequential algorithms do
not take advantage of the multiple cores available and are prohibitively slow for datasets of these
sizes. Thus, it is essential to develop efficient and performant shared-memory parallel algorithms
and implementations that can scale to up to datasets of sizes in the hundreds of billions, from both
a cost-savings and accessibility point of view.

Achieving parallel implementations that take full advantage of multiple cores is non-trivial.
The problems that we study in this proposal are work-intensive, so highly parallel solutions that
significantly increase the asymptotic work complexity lead to poor performance, especially for large
datasets and where a limited number of cores is available. Moreover, the state-of-the-art sequential
algorithms often have sequential dependencies that limit the amount of parallelism that can be
naively introduced, particularly when scaling these solutions to increasing numbers of cores. Some
of these problems are also known to be (or we show that they are) P-complete, indicating that
polylogarithmic span solutions are highly unlikely, theoretically limiting the scalability of solutions
to these problems. Especially in these scenarios, we must additionally take into account practical
considerations in designing parallel implementations. Factors including cache performance and
memory contention have significant effects on performance (for instance, see [52]), notably in large-
scale multicore algorithms that involve frequent memory accesses and updates to shared locations.

We tackle these problems from two angles. First, we focus on developing algorithms with strong
theoretical guarantees, which often translates to the most significant performance improvements
in practice, over algorithms without theoretical bounds or with exponentially worse theoretical
guarantees. By focusing specifically on work-efficient algorithms with low span, our implementa-
tions start from a strong theoretical grounding. We then improve our theoretically-efficient im-
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plementations with practical optimizations, using performance engineering techniques to achieve
fast implementations on real-world datasets. We investigate parallel data structures and techniques
that offer tradeoffs between performance and space-usage, as well as heuristics that optimize for
cache-efficiency and minimize parallel overheads.

In this thesis, we study the following topics relating to fast and scalable parallel clustering:

1. the efficient discovery and enumeration of small subgraphs, which has applications in cluster-
ing metrics and graph statistics,

2. decomposition algorithms to discover hierarchical dense substructures based on higher order
subgraphs, which form hierarchical clusters in themselves, but can also be used for clustering
metrics and in preprocessing tasks, and

3. a generalized framework for graph and metric clustering, including an exploration of the
interplay between metric datasets and graph building techniques.

In more detail, we have developed work-efficient parallel cycle and clique counting algorithms,
and we have obtained experimental results demonstrating that these outperform previous state-of-
the-art implementations [97,189,192]. We plan to generalize the techniques used in these algorithms
to other types of small subgraphs, as well as subgraphs of larger sizes, for which some theoretical
barriers exist [26]. Also, using our efficient subgraph counting algorithms, we have developed
corresponding decomposition algorithms that hierarchically discover dense substructures based on
subgraph motifs [189, 190, 192]. Our algorithms are work-efficient with low depth, and while we
show that the exact problems are often P-complete, we provide approximation algorithms as well
that have polylogarithmic depth. We plan to explore dynamic algorithms and other approximation
algorithms for these problems.

Furthermore, we have developed an efficient shared-memory parallel correlation clustering im-
plementation based on an exploration of several heuristic optimizations [188]. Our goal is to develop
a generalized graph and metric clustering framework, to allow users to explore multiple state-of-
the-art clustering algorithms in a single easy-to-use package. Moreover, metric and graph clustering
techniques are often linked, and a metric clustering problem can be translated into a graph cluster-
ing problem through the use of graph building techniques on pointsets, such as k-nearest neighbors
graphs [56]. We plan to explore these commonalities in our framework and offer a pipeline to
translate seamlessly from metric clustering problems to graph clustering problems. Additionally,
we plan to develop new parallel clustering implementations, including a high-dimensional k-means
implementation.

Thesis statement: Developing shared-memory parallel clustering algorithms with strong the-
oretical guarantees and using performance engineering techniques can lead to highly scalable, effi-
cient, and cost-effective implementations on real-world datasets.

2 Preliminaries
We consider graphs G = (V,E) to be simple and undirected, and we let n = |V | be the number of
vertices and m = |E| be the number of edges. For any vertex v, deg(v) denotes the degree of v. The
arboricity (α) of a graph is the minimum number of spanning forests needed to cover the graph.
α is upper bounded by O

(√
m
)

and lower bounded by Ω
(
1
)

[40]. Closely related to arboricity
is the degeneracy (d) of a graph G, or the smallest k such that every subgraph of G contains a
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vertex of degree at most k. It is known that d = Θ(α) [151]. We note that having theoretical
bounds parameterized by α, and as a result by d, is desirable since most real-world graphs have low
arboricity [55]. A c-orientation of an undirected graph is a total ordering on the vertices, where
the oriented out-degree of each vertex (the number of its neighbors higher than it in the ordering)
is bounded by c.

For analysis, we use the work-span model [46, 103]. The work W of an algorithm is the total
number of operations, and the span S is the longest dependency path. We can execute a parallel
computation in W/P + S running time using P processors [31]. We aim for work-efficient parallel
algorithms in this model, that is, an algorithm with work complexity that asymptotically matches
the best-known sequential time complexity for the problem. We assume concurrent reads and writes
and atomic adds are supported in the model in O

(
1
)

work and span. We say O(f(n)) with high
probability (whp) to indicate O(cf(n)) with probability at least 1 − n−c for c ≥ 1, where n is the
input size.

Throughout our work, we use primitives from the Graph Based Benchmark Suite (GBBS) [58]
and ParlayLib [29]. Notably, we use the efficient work-stealing scheduler from ParlayLib, which, as
shown in [29], provides on average a 1.43x speedup over Intel’s Parallel STL library.

3 Subgraph Counting and Listing
In the absence of ground-truth data, one of the key methods to determining the quality of graph
clusterers is by investigating the makeup of small subgraphs within these clusters in relation to the
overarching graph [25, 209, 212, 222]. Additionally, graphlet kernels and subgraph-based feature
extraction for graphs are important steps in many machine learning pipelines for graph classifica-
tion and community detection [88, 95, 173, 187]. Discovering specific subgraphs, such as k-cliques,
can also contribute directly to community detection and graph partitioning tasks, as subroutines
to more complex algorithms [25, 212]. Outside of clustering-related applications, subgraph count-
ing in general has widespread applications in network analytics across various domains including
bioinformatics and social network analysis [34,71,94]. We also note that cycle counting specifically
has further important applications, including spam and fraud detection [24], and link classification
and recommendation [211].

However, subgraph counting is a difficult problem particularly for subgraphs of larger sizes.
The number of possible subgraphs grows exponentially with the subgraph size, so as such, discov-
ering and counting these subgraphs naively can be computationally expensive. For instance, five-
cycle counting is particularly computationally intensive and takes up between 25–58% of the total
running time of the state-of-the-art serial Efficient Subgraph Counting Algorithmic PackagE (ES-
CAPE) [167] for general five-vertex subgraph counting. ESCAPE is unable to complete five-cycle
counting on a graph with 200 million edges (com-orkut [127]) in 5.5 hours on an 18-core machine
with 144 GiB of main memory. Additionally, for certain graphs, even state-of-the-art subgraph
counting implementations for specific subgraphs, notably cliques, encounter memory limitations.
Jain and Seshadhri’s Pivoter [102], Danisch et al.’s kClist [48], Mhedhbi and Salihoglu’s worst-
case optimal join algorithm [148], and Lai et al.’s binary join algorithm [122] all run out of memory
when counting four-cliques on graphs with billions to hundreds of billions of edges (ClueWeb [47],
Hyperlink2014 [147], Hyperlink2012 [147]) on a machine with 80 cores and 3844 GiB of main mem-
ory.

We overcome these difficulties by exploiting common structural characteristics of real-world
graphs. In particular, real-world graphs are often sparse and exhibit low arboricity. We have devel-

4



oped algorithms to efficiently obtain acyclic low out-degree orientations of these graphs, which we
can then use to prune the search space of directed subgraphs [135, 189]. Even with the use of low
out-degree orderings, though, we note that there are theoretical and practical barriers to efficiently
counting large subgraphs in parallel in practice. We address these barriers in various ways. We ex-
plore the tradeoffs between space usage and performance in both our theoretical guarantees and our
implementations, and we introduce approximation algorithms with unbiased estimators that offer
much more significant speedups [189,192]. We also explore different data structures and orientation
algorithms, which may not be work-efficient but which offer better performance with lower parallel
overheads in practice [97, 189, 192]. Our implementations are able to complete five-cycle counting
on a graph with 200 million edges (com-orkut [127]) in under 3 minutes, and four-clique count-
ing on graphs with billions to hundreds of billions of edges (ClueWeb [47], Hyperlink2014 [147],
Hyperlink2012 [147]) in 2 hours, 4 hours, and 45 hours respectively, on the same corresponding
machines as previously mentioned. Finally, maintaining subgraph counts on evolving or dynamic
graphs poses an additional computational challenge, and we plan to explore this problem in our
future work.

3.1 Related Work
There have been a wealth of related work on sequential and parallel subgraph counting, both for
specific subgraphs or subgraph classes of interest, and for general subgraphs [171]. Additionally,
certain algorithms focus on subgraph counting on graphs in specific graph classes, such as bipartite
graphs and trees. Other variations include local subgraph counting per-vertex or per-edge. Many
algorithms have been designed for finding 4- and 5-vertex subgraphs (e.g., [6,159,166,167,174,220])
as well as estimating larger subgraph counts (e.g., [32,33,225]). Worst-case optimal join algorithms
from the database literature [3,122,148,158] have also been developed for small subgraph counting.

In the special case of k-cliques, a trivial algorithm enumerates k-cliques in O(nk) work, and
using a thresholding argument improves the work for counting to O(mc/2) [8]. The current fastest
combinatorial algorithms for k-clique enumeration for sparse graphs are based on the seminal results
of Chiba and Nishizeki [40], who show that all k-cliques can be enumerated in O

(
mαk−2

)
work,

where α is the arboricity of the graph. For arbitrary graphs, the fastest theoretical algorithm uses
matrix multiplication, and counts 3l cliques in O

(
nlω

)
time where ω is the matrix multiplication

exponent [153]. The k-clique counting problem is a canonical hard problem in the FPT literature,
and is known to be W [1]-complete when parametrized by k [60]. We refer the reader to [213],
which surveys other theoretical algorithms for this problem. The current state-of-the-art practical
algorithms for k-clique counting are all based on the Chiba-Nishizeki algorithm [48, 130, 189]. The
special case of counting and listing triangles (k = 3) has received a huge amount of attention over
the past two decades (e.g., [12, 15, 91, 143, 161, 164, 165, 194, 205, 206, 210, 211, 232], among many
others).

Additionally, in the special case of k-cycle counting, efficient algorithms have been developed to
count k-cycles for k ≤ 5. Notably, Alon et al. [8] developed algorithms for efficiently finding a k-
cycle for general k, but these translate to efficient k-cycle counting algorithms only for planar graphs
where k ≤ 5. For k = 4, Chiba and Nishizeki [40] proposed algorithms that take O(mα) work,
and Sanei-Mehri et al. [176] also introduce approximate counting algorithms based on sampling
and graph sparsification. More recently, Bera et al. [26] analyzed the subgraph counting problem
for k = 5 and gave an algorithm where the five-cycle counting subroutine takes O(mα3) work.
Kowalik [117] improves this with a five-cycle counting algorithm that takes O(mα2) work. The
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current state-of-the-art practical algorithms for four-cycle counting are, as in k-clique counting, all
based on the Chiba-Nishizeki algorithm [192,217].

Moreover, there has been much recent work on the problem of maintaining subgraph counts on
dynamic graphs. Eppstein and Spiro [66] present sequential dynamic algorithms for maintaining
3-vertex subgraph counts in amortized time proportional to the h-index of the graph, and Eppstein
et al. [65] extend these results to 4-vertex subgraphs. Hanauer et al. [92] prove lower bounds on dy-
namic 4-vertex subgraph counting and give new efficient algorithms for certain 4-vertex subgraphs;
they also show that Eppstein et al.’s [65] dynamic 4-vertex subgraph counting algorithm cannot be
improved by a polynomial factor in the general case. Ammar et al. [10] obtain parallel dynamic
worst-case optimal join algorithms for subgraph counting, but do not obtain improvements over
their static worst-case complexity. Very recently, Chen et al. [38] introduce a practically efficient
parallel dynamic subgraph enumeration algorithm that uses graph orientations to avoid double-
counting, although their algorithm is not work-efficient. In the special case of triangle and k-clique
counting, Kara et al. [113] and Dvorak and Tuma [62] respectively give sequential dynamic algo-
rithms. In the parallel setting and specifically for triangle counting, Ediger et al. [63] and Makkar
et al. [143] present batch-dynamic algorithms, but these take linear work per update in the worst
case. Dhulipala et al. [57] develop theoretically efficient parallel batch-dynamic k-clique counting
algorithms with fast and practical implementations.

3.2 Butterfly Counting
Triangles are core substructures in unipartite graphs, and indeed triangle counting is a core met-
ric with widespread applications in areas including social network analysis [155], spam and fraud
detection [24], and link classification and recommendation [211]. However, bipartite graphs do not
contain triangles; instead, butterflies, also known as (2, 2)-bicliques, 4-cycles, or rectangles, are the
smallest non-trivial dense subgraph in bipartite graphs.

In our work, we present a framework, ParButterfly, that provides different implementations
for butterfly counting with strong theoretical guarantees [192]. The main procedure for butterfly
counting involves finding wedges, or 2-paths, and combining them to count butterflies. In more
detail, we find all wedges originating from each vertex, and then aggregate the counts of wedges
incident to every distinct pair of vertices forming the endpoints of the wedge. The ParButterfly
framework provides different ways to aggregate wedges in parallel, including sorting, hashing, his-
togramming, and batching. We further speed up the counting procedure by ranking vertices and
only considering wedges formed by a particular ordering of the vertices. ParButterfly supports
different parallel ranking methods, including side-ordering, approximate and exact degree-ordering,
and approximate and exact complement-coreness ordering, all of which can be combined with any
of the aggregation methods. Furthermore, we present parallel approximate butterfly counting al-
gorithms and implementations within this framework, via graph sparsification based on ideas by
Sanei-Mehri et al. [176] for the sequential setting. We additionally integrate a cache optimization
for butterfly counting by Wang et al. [217].

We prove theoretical bounds showing that certain variants of our counting algorithms are work-
efficient and take polylogarithmic span. Specifically, ParButterfly gives a counting algorithm
that takes O

(
αm

)
expected work, O

(
logm

)
span whp, and O

(
min(n2, αm)

)
additional space. Ad-

ditionally, ParButterfly gives an approximate counting algorithm that takes O
(
(1 + α′p)m

)
expected work, O

(
logm

)
span whp, and O

(
min(n2, (1 + α′p)m)

)
space, where α′ is the arboricity

of the sparsified graph and p is the sampling probability. We use two sparsification methods, edge
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sparsification and colorful sparsification, both of which give unbiased estimates of the total butterfly
count.

Moreover, we present a comprehensive experimental evaluation of all of the different variants
of counting algorithms in ParButterfly, and we show on a 48-core machine with 2-way hy-
perthreading, our counting algorithms achieve self-relative speedups of up to 39x and outperform
the previous fastest sequential baseline by up to 14x [176]. Compared to PGD [6], the previous
state-of-the-art parallel subgraph counting solution that can count butterflies as a special case,
ParButterfly is 350–5169x faster.

3.3 Five-cycle Counting
Cycle counting specifically is an important problem in fraud detection [169], and of the 5-vertex
subgraphs, five-cycles are significantly more difficult to count because they are the only such pat-
tern that requires first counting all directed three-paths. Indeed, the Efficient Subgraph Counting
Algorithmic PackagE (ESCAPE), a software package by Pinar et al. that serially counts all 5-
vertex subgraphs [167], spends between 25–58% of the total 5-vertex subgraph counting runtime
on counting five-cycles alone based on our measurement. We present two new parallel five-cycle
counting algorithms that not only have strong theoretical guarantees, but are also demonstrably
fast in practice [97]. These algorithms are based on two different serial algorithms, namely by
Kowalik [117] and from ESCAPE by Pinar et al. [167].

Kowalik studied k-cycle counting in graphs for k ≤ 6 and proposed a five-cycle counting algo-
rithm that runs in O(md2) = O(mα2) time for d-degenerate graphs [117], where α is the arboricity
of the graph. Pinar et al.’s ESCAPE [167] contains contains a five-cycle counting algorithm that,
with an important modification that we make, achieves the same asymptotic complexity of O(mα2).
The main procedure in both algorithms, and the essential modification to ESCAPE, is to first com-
pute an appropriate arboricity orientation of the graph in parallel, where the vertices’ out-degrees
are upper-bounded by O(α). We use parallel orientation algorithms that we developed for paral-
lel k-clique counting [189], which we discuss in more detail in Section 3.4. This orientation then
enables the efficient counting of directed two-paths and three-paths, which are then appropriately
aggregated to form five-cycles. Notably, the counting and aggregation steps can each be efficiently
parallelized. The two algorithms differ fundamentally in the ways in which they use the orientations
of these path substructures to eliminate double-counting.

We prove theoretical bounds that show that both of our algorithms match the work of the best
sequential algorithms, taking O(mα2) work and O(log2 n) span whp. Additionally, we present two
approximate five-cycle counting algorithms based on counting five-cycles in a sparsified graph, and
we prove that both approximation algorithms give unbiased estimates on the global five-cycle count.
We show that both algorithms take O(pmα2 + m) expected work and O(log2 n) span whp for a
sampling probability p.

We present optimized implementations of our algorithms, which use thread-local data struc-
tures, fast resetting of arrays, and a new work scheduling strategy to improve load balancing.
We provide a comprehensive experimental evaluation of our five-cycle counting algorithms. On a
36-core machine with 2-way hyperthreading, our best exact parallel algorithm achieves between
10–46x self-relative speedup, and between 162–818x speedups over the fastest prior serial five-cycle
counting implementation, which is from ESCAPE [167]. We also implement our own serial versions
of the two exact algorithms, which are 7–39x faster than ESCAPE’s algorithm due to improved
theoretical work complexities. Our best parallel algorithm achieves between 10–32x speedups over
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our best serial algorithm. Moreover, we show the tradeoffs between error and running time of our
approximate five-cycle counting algorithms. In particular, we are able to approximate five-cycle
counts with 12% error with a 9–189x speedup over exact five-cycle counting on the same graphs.

3.4 k-clique Counting and Listing
Finding k-cliques in a graph is a fundamental graph-theoretic problem with a long history of study
in both theory and practice. In recent years, k-clique counting and listing have been widely ap-
plied in practice due to their many applications, including in learning network embeddings [173],
understanding the structure and formation of networks [212, 227], identifying dense subgraphs for
community detection [69,87,182,209], and graph partitioning and compression [73].

We design a new parallel k-clique counting algorithm arb-count [189] that matches the work of
Chiba-Nishezeki [40] (which is the best known sequential algorithm for k-clique counting for sparse
graphs), has polylogarithmic span, and has improved space complexity compared to kClist [48],
the state-of-the-art parallel k-clique counting algorithm. Our algorithm is able to significantly
outperform kClist and other competitors, and scale to larger graphs than prior work. arb-count
is based on using low out-degree orientations of the graph to reduce the total work. Assuming that
we have a low out-degree ranking of the graph, we show that for a constant k we can count or
list all k-cliques in O

(
mαk−2

)
work, and O

(
k log n + log2 n

)
span whp where α is the arboricity

of the graph. Theoretically, arb-count requires O
(
α
)

extra space per processor; in contrast, the
kClist algorithm requires O

(
α2

)
extra space per processor. Furthermore, kClist does not achieve

polylogarithmic span.
We also design an approximate k-clique counting algorithm based on counting on a sparsi-

fied graph. We show that our approximate algorithm produces unbiased estimates and runs in
O
(
pmαk−2 +m

)
work and O

(
k log n+ log2 n

)
span whp for a sampling probability of p.

In order to obtain the low out-degree orientations used in our k-clique counting algorithms, we
present two new parallel algorithms for efficiently ranking the vertices. We show that a distributed
algorithm by Barenboim and Elkin [22] can be implemented in linear work and polylogarithmic
span. We also parallelize an external-memory algorithm by Goodrich and Pszona [86] and obtain
the same complexity bounds.

We perform a thorough experimental study on a 30-core machine with 2-way hyperthreading
and compare to prior work. We show that on a variety of real-world graphs and different k,
our k-clique counting algorithm arb-count achieves 1.31–9.88x speedup over the state-of-the-art
parallel kClist algorithm [48] and self-relative speedups of 13.23–38.99x. We also compared our
k-clique counting algorithm to other parallel k-clique counting implementations including Jain and
Seshadhri’s Pivoter [102], Mhedhbi and Salihoglu’s worst-case optimal join algorithm (WCO)
[148], Lai et al.’s implementation of a binary join algorithm (BinaryJoin) [122], and Pinar et al.’s
ESCAPE [167], and demonstrate speedups of up to several orders of magnitude.

Furthermore, by integrating state-of-the-art parallel graph compression techniques, we can pro-
cess graphs with tens to hundreds of billions of edges, significantly improving on the capabilities
of existing implementations. As far as we know, we are the first to report 4-clique counts for
Hyperlink2012, the largest publicly-available graph, with over two hundred billion undirected edges.

We study the accuracy-time tradeoff of our sampling algorithm, and show that is able to ap-
proximate the clique counts with 5.05% error 5.32–6573.63 times more quickly than running our
exact counting algorithm on the same graph. We compare our sampling algorithm to Bressan et
al.’s serial MOTIVO [33], and demonstrate 92.71–177.29x speedups.
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3.5 Future Work
We aim to incorporate our specialized subgraph counting algorithms into a more general framework
for small subgraph counting. We plan to develop theoretically efficient parallel algorithms for general
k-vertex subgraph counting where k ≤ 5, based on the state-of-the-art serial algorithms [26,167]. In
particular, our acyclic orientation algorithms [189] can be used to reduce the subgraph isomorphisms
that we must discover for other classes of subgraphs, and for k ≤ 5, we plan to incorporate these
algorithms in a modularized fashion into a k-vertex subgraph counting framework. Other systems
for general subgraph counting include AutoMine [146], Pangolin [39], and Peregrine [104, 105].
Most recently, Chen et al.’s Sandslash [38] is a practically efficient parallel implementation for
subgraph enumeration that uses graph orientations to avoid double-counting, but does not have
strong theoretical guarantees and is not work-efficient. We plan to improve upon their running
times by exploring theoretically efficient algorithms, and combining these with additional practical
optimizations.

Additionally, Bera et al. [26] showed that under the Triangle Detection Conjecture [2], there
exists a constant γ > 0 such that for any k ≥ 6 and any function f : N → N, there is no expected
o(f(α)m1+γ) algorithm for k-cycle counting. While practical implementations for six-cycle counting
have been developed (standalone or as part of general subgraph counting systems) [3, 226], these
results do not include strong theoretical guarantees. We plan to develop practically efficient k-cycle
counting algorithms on sparse graphs for k ≥ 6 with strong theoretical guarantees. A challenging
barrier to this problem is efficiently aggregating and combining long directed paths, as well as
capturing all isomorphisms of these k-cycles under acyclic orientations.

4 Subgraph Decomposition
The discovery of dense substructures, particularly through the use of higher order structures, is a
fundamental topic in graph mining. In particular, understanding the distributions of and relation-
ships between dense substructures has important applications in graph visualization tasks [9, 236],
gene correlation and DNA motif detection in biological networks [79,230], motif detection in financial
networks [61], and community detection in social networks and web graphs [68,131]. Constructing
hierarchies of dense substructures can form the basis of clustering pipelines, either as a preprocessing
step or as a clusterer in itself [25, 83,126,212].

However, these dense substructure discovery algorithms often rely first on finding and listing
certain subgraphs as a subroutine, and then maintaining these subgraphs through a decomposition
algorithm in order to construct these hierarchies. This general process is computationally intensive,
with many theoretical and practical barriers, due to P-completeness results and memory limita-
tions, which we explore in our work [189, 190]. For instance, the previous state-of-the-art serial
implementations for butterfly peeling [180] takes over 4 hours on a graph with 5.7 million edges
(discogs_style [121]) on a machine with 48 cores and 384 GiB of main memory, and the previous
state-of-the-art serial implementations for finding the k-clique densest subgraph [48,69] take over 5
hours for k = 8 on a graph with 200 million edges (com-orkut [127]) on a machine with 30 cores and
240 GiB of main memory. Moreover, for the same graph and on the same machine, the previous
state-of-the-art parallel implementation for computing the (3, 4)-nucleus decomposition [181, 182]
takes over an hour.

We use efficient data structures from GBBS [58] as well as our efficient subgraph counting sub-
routines in order to provide practical decomposition implementations [189,190,192]. We also present
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new efficient data structures, notably a new multi-level hash table structure to store information
on cliques space-efficiently and a technique for traversing this structure cache-efficiently for the
nucleus decomposition problem [190]. Moreover, we develop various approximation algorithms that
take polylogarithmic span and are more scalable alternatives to the exact algorithms [189, 192].
Our implementations are able to perform butterfly peeling on a graph with 5.7 million edges
(discogs_style [121]) in under 0.5 seconds on the previously mentioned machine with 48 core and
384 GiB of main memory. Also, we are able to compute the k-clique densest subgraph on a graph
with 200 million edges (com-orkut [127]) in 2.5 hours, and perform (3, 4)-nucleus decomposition on
the same graph in under 15 minutes, on the same machine as previously mentioned with 30 cores
and 240 GiB of main memory.

4.1 Related Work
These subgraph decomposition problems are inspired by and closely related to the k-core problem,
which was defined independently by Seidman [185], and by Matula and Beck [145]. The k-core
of a graph is the maximal subgraph of the graph where the induced degree of every vertex is at
least k. The coreness of a vertex is the maximum value of k such that the vertex participates in a
k-core. Matula and Beck provided a linear time algorithm based on peeling vertices that computes
the coreness value of all vertices [145].

Butterfly, or four-cycle, peeling is an algorithm for hierarchically discovering dense subgraphs in
bipartite graphs, and was first developed by Zou [238] and Sariyüce and Pinar [180]. While these
algorithms can be directly applied to unipartite graphs, in the special case of bipartite graphs, but-
terflies are (2,2)-bicliques and are the arguable equivalent to triangles, or three-cliques, in unipartite
graphs; in this sense, butterflies are the smallest non-trivial subgraph that form the building blocks
for dense subgraphs in bipartite graphs. In more detail, there are two variations of butterfly peeling,
namely per vertex (tip decomposition) or per edge (wing decomposition), depending on whether
vertices or edges are used respectively to define these dense subgraphs. Zou [238] introduces the
latter, and Sariyüce and Pinar [180] introduce the former. Wang et al. [218] present a sequential
algorithm for butterfly edge peeling that improves over the algorithm by Sariyüce and Pinar [180] in
practice, and uses an index that takes O

(
αm

)
space. Additionally, Lakhotia et al. [123] develop an

improved practically efficient parallel butterfly vertex peeling implementation that offers tradeoffs
between work and scalability, and Wang et al. [219] develop a fast parallel butterfly edge peeling
implementation that uses batch-based optimizations. A different approach to discovering dense
substructures in bipartite graphs is the (α, β) decomposition, introduced by Liu et al. [134], which
is a more direct generalization of k-core for bipartite graphs based on the degrees of vertices of each
bipartition in the graph.

In general graphs, k-cliques are notable dense subgraphs of interest, and importantly, the k-
clique densest subgraph problem, introduced by Tsourakakis [209], is a generalization of the densest
subgraph problem. Tsourakakis presents a sequential 1/k-approximation algorithm based on itera-
tively peeling the vertex with the minimum k-clique count, and a parallel 1/(k(1+ϵ))-approximation
algorithm based on a parallel densest subgraph algorithm of Bahmani et al. [18]. Sun et al. [204]
give additional approximation algorithms that converge to produce the exact solution over further
iterations; these algorithms are more sophisticated and demonstrate the tradeoff between running
times and relative errors. Recently, Fang et al. [69] propose algorithms for finding the largest
(j,Ψ)-core of a graph, or the largest subgraph such that all vertices have at least j subgraphs Ψ
incident on them. They propose an algorithm for Ψ being a k-clique that peels vertices with larger
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clique counts first and show that their algorithm gives a 1/k-approximation to the k-clique densest
subgraph.

Many other concepts capturing dense near-clique substructures have been proposed, including
k-trusses (or triangle-cores), k-plexes [186], and n-clans and n-clubs [149]. In particular, k-trusses
were proposed independently by Cohen [44], Zhang et al. [234], and Zhou et al. [236] with the goal
of efficiently obtaining dense clique-like substructures. Unlike other near-clique substructures like
k-plexes, n-clans, and n-clubs, which are computationally intractable to enumerate and count, k-
trusses can be efficiently found in polynomial-time. Many parallel, external-memory, and distributed
algorithms have been developed in the past decade for k-cores [54, 70, 109, 115, 150, 223] and k-
trusses [28,35,37,45,110,137,195,216,238], and computing all trussness values of a graph is one of
the challenge problems in the yearly MIT GraphChallenge [175]. Additional work has focused on
how to maintain k-cores and k-trusses in dynamic graphs [7,11,96,98,107,108,132,133,140,141,178,
203,223,233,235]. The concept of a (r, s) nucleus decomposition was first proposed by Sariyüce et al.
as a principled approach to discovering dense substructures in graphs that generalizes k-cores and
k-trusses [182]. They also proposed an algorithm for efficiently finding the hierarchy associated with
a (r, s) nucleus decomposition [179]. Sariyüce et al. later proposed parallel algorithms for nucleus
decomposition based on local computation [181]. Recent work has studied nucleus decomposition
in probabilistic graphs [67]. Very recently, Sariyüce proposed a motif-based decomposition, which
generalizes the connection between r-cliques and s-cliques in nucleus decomposition to any pair of
subgraphs [177].

4.2 Butterfly Peeling
As discussed in Section 3.2, butterflies, or (2, 2)-bicliques, are fundamental dense building blocks
of bipartite graphs, and in particular, they naturally lend themselves to finding dense subgraph
structures in bipartite networks. Zou [238] and Sariyüce and Pinar [180] developed peeling algo-
rithms to hierarchically discover dense subgraphs. We present in our framework ParButterfly
new parallel algorithms for butterfly peeling, with strong theoretical bounds [192]. Our peeling
algorithms iteratively remove the vertices (tip decomposition) or edges (wing decomposition) with
the lowest butterfly count until the graph is empty. Each iteration removes vertices (edges) from
the graph in parallel and updates the butterfly counts of neighboring vertices (edges) using the
parallel wedge aggregation techniques that we developed for counting, discussed in Section 3.2. We
use a parallel bucketing data structure by Dhulipala et al. [54] and a new parallel Fibonacci heap
to efficiently maintain the butterfly counts.

Our parallel Fibonacci heap improves upon the work bounds for vertex-peeling from Sariyüce and
Pinar’s sequential algorithms, which take work proportional to the maximum number of per-vertex
butterflies. ParButterfly gives a vertex-peeling algorithm that takes O

(
min(max-bv, ρv log n)+∑

v∈V deg(v)2
)

expected work, O
(
ρv log

2 n
)

span whp, and O
(
n2 + max-bv

)
additional space, and

an edge-peeling algorithm that takes O
(
min(max-be, ρe log n) +

∑
(u,v)∈E

∑
u′∈N(v) min(deg(u),

deg(u′))
)

expected work, O
(
ρe log

2 m
)

span whp, and O
(
m + max-be

)
additional space, where

max-bv and max-be are the maximum number of per-vertex and per-edge butterflies and ρv and
ρe are the number of vertex and edge peeling iterations required to remove the entire graph. Addi-
tionally, given a slightly relaxed work bound, we can improve the space bounds in both algorithms;
specifically, we have a vertex-peeling algorithm that takes O

(
ρv log n +

∑
v∈V deg(v)2

)
expected

work, O
(
ρv log

2 n
)

span whp, and O
(
n2

)
additional space, and we have an edge-peeling algorithm

that takes O
(
ρe log n+

∑
(u,v)∈E

∑
u′∈N(v) min(deg(u),deg(u′))

)
expected work, O

(
ρe log

2 m
)

span
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whp, and O
(
m
)

additional space.
We present a comprehensive experimental evaluation of all of the different variants of butterfly

peeling algorithms in the ParButterfly framework. On a 48-core machine with 2-way hyper-
threading, our peeling algorithms achieve self-relative speedups of between 1.0–10.7x for vertex
peeling and between 2.3–10.4x for edge peeling. Moreover, due to their improved work complexi-
ties, our peeling algorithms outperform the fastest sequential baseline [180] by between 1.3–30696x
for vertex peeling and between 3.4–7.0x for edge peeling. Our speedups are highly variable because
they depend heavily on the peeling complexities and the number of empty buckets processed.

4.3 k-clique Densest Subgraph
The k-clique densest subgraph problem is a generalization of the densest subgraph problem, which
was first introduced by Tsourakakis [209], that captures higher-order k-clique structures in a graph
in order to discover large near-cliques. This problem admits a natural 1/k-approximation by peeling
vertices in order of their incident k-clique counts. We present a new parallel peeling algorithm, arb-
peel, that peels all vertices with the lowest k-clique count on each round and uses arb-count as
a subroutine [189]. The expected amortized work of arb-peel is O

(
mαk−2 + ρk(G) log n

)
and the

span is O
(
ρk(G)k log n + log2 n

)
whp, where ρk(G) is the number of rounds needed to completely

peel the graph and α is the arboricity of the graph. We also prove that the problem of obtaining
the hierarchy given by this process is P-complete for k > 2, indicating that a polylogarithmic-span
solution is unlikely.

Tsourakakis also shows that naturally extending the Bahmani et al. [18] algorithm for approx-
imate densest subgraph gives an 1/(k(1 + ϵ))-approximation in O

(
log n

)
parallel rounds, although

they were not concerned about work. We present an O
(
mαk−2

)
work and polylogarithmic-span

algorithm, arb-approx-peel, for obtaining a 1/(k(1 + ϵ))-approximation to the k-clique densest
subgraph problem. We obtain this work bound using our k-clique counting algorithm as a subrou-
tine. Danisch et al. [48] use their k-clique counting algorithm as a subroutine to implement these
two approximation algorithms for the k-clique densest subgraph as well, but their implementations
do not have provably-efficient bounds.

We implement both arb-peel and arb-approx-peel with practical optimizations, and per-
form an experimental study on a 30-core machine with 2-way hyperthreading. We show that our
parallel approximation algorithms for k-clique densest subgraph are able to outperform the parallel
kClist [48] by up to 29.59x and achieve 1.19–13.76x self-relative speedup. We demonstrate up to
53.53x speedup over Fang et al.’s serial CoreApp [69] as well.

4.4 Nucleus Decomposition
Sariyüce et al. [182] introduced the nucleus decomposition problem, which generalizes the influential
notions of k-cores and k-trusses to k-(r, s) nuclei, and can better capture higher-order structures in
the graph. Informally, a k-(r, s) nucleus is the maximal induced subgraph such that every r-clique
in the subgraph is contained in at least k s-cliques. The goal of the (r, s) nucleus decomposition
problem is to identify for each r-clique in the graph, the largest k such that it is in a k-(r, s) nucleus.

Solving the (r, s) nucleus decomposition problem is a significant computational challenge for
several reasons. First, simply counting and enumerating s-cliques is a challenging task, even for
modest s. Second, storing information for all r-cliques can require a large amount of space, even for
relatively small graphs. Third, engineering fast and high-performance solutions to this problem re-
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quires taking advantage of parallelism due to the computationally-intensive nature of listing cliques.
There are two well-known parallel paradigms for approaching the (r, s) nucleus decomposition prob-
lem, a global peeling-based model and a local update model that iterates until convergence [181].
The former is inherently challenging to parallelize due to sequential dependencies and necessary syn-
chronization steps [181], which we address in our work, and we demonstrate that the latter requires
orders of magnitude more work to converge to the same solution and is thus less performant [190].

Lastly, it is unknown whether existing sequential and parallel algorithms for this problem are
theoretically efficient. Notably, existing algorithms perform more work than the fastest theoretical
algorithms for k-clique enumeration on sparse graphs [40,189], and it is open whether one can solve
the (r, s) nucleus decomposition problem in the same work as s-clique enumeration.

We address the computational challenges by designing a theoretically efficient parallel algorithm
for (r, s) nucleus decomposition that nearly matches the work for s-clique enumeration, along with
new techniques that improve the space and cache efficiency of our solutions. The key to our
theoretical efficiency is a new combinatorial lemma bounding the total sum over all k-cliques in the
graph of the minimum degree vertex in this clique, which enables us to to provide a strong upper
bound on the overall work of our algorithm. As a byproduct, we also obtain the most theoretically-
efficient serial algorithm for (r, s) nucleus decomposition. We provide several new optimizations for
improving the practical efficiency of our algorithm, including a new multi-level hash table structure
to space efficiently store data associated with cliques, a technique for efficiently traversing this
structure in a cache-friendly manner, and methods for reducing contention and further reducing
space usage. Finally, we experimentally study our parallel algorithm on various real-world graphs
and (r, s) values, and find that it achieves between 3.31–40.14x self-relative speedup on a 30-core
machine with 2-way hyperthreading. The only existing parallel algorithm for nucleus decomposition
is by Sariyüce et al. [181], but their algorithm requires much more work than the best sequential
algorithm. Our algorithm achieves between 1.04–54.96x speedup over the state-of-the-art parallel
nucleus decomposition of Sariyüce et al., and our algorithm can scale to larger (r, s) values, due to
our improved theoretical efficiency and our proposed optimizations. We are able to compute the
(r, s) nucleus decomposition for r > 3 and s > 4 on several million-scale graphs for the first time.

4.5 Future Work
We plan to develop parallel approximation algorithms for (r, s) nucleus decomposition, based on
prior work on approximate k-clique peeling [189, 209] algorithms; importantly, we aim to obtain
theoretically efficient approximation algorithms with polylogarithmic span, in order to significantly
speed up the (r, s) nucleus decomposition implementations with relatively low percentage errors.
Additionally, developing an approximate algorithm is an essential first step to obtaining an efficient
dynamic (r, s) nucleus decomposition algorithm. Even in the special case of the k-core decompo-
sition, the state-of-the-art prior work for maintaining the k-core decomposition in the sequential
setting does not take polylogarithmic update time per single edge update. Indeed, a single edge
update may cause all coreness values of all vertices to change; for instance, in the case of a cycle
with one edge removed, repeatedly adding and removing this edge causes the coreness values of
all vertices to repeatedly change. Thus, the goal is to extend upon our work on parallel batch-
dynamic algorithms for approximate k-core [135] to obtain amortized polylogarithmic time bounds
for approximate (r, s) nucleus decomposition, which hopefully translate to improved performance
in practice over exact dynamic algorithms as well.

In both of these settings as well as the exact static setting, we also plan to develop algorithms to
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return not only the nuclei of each r-clique, but also the (r, s) nucleus decomposition hierarchy [179].
The (r, s) nucleus decomposition hierarchy encodes connectivity information, which can be retrieved
from the nuclei, but is non-trivial to compute work-efficiently with low depth in parallel and is non-
trivial to maintain dynamically. In particular, a naive algorithm would recompute connectivity
across all r-cliques per nucleus number, which would not be work-efficient.

5 Parallel Clustering Framework and Algorithms
One of the main directions of our work is to develop a shared-memory parallel graph and metric
clustering framework that is scalable and fast for graphs or pointsets with up to tens to hundreds of
billions of edges or points respectively. While there exists a wealth of graph and metric clustering
algorithms with different theoretical guarantees and use-cases [4,144,184], one fundamental question
is how performant and how effective these algorithms are on different types of real-world datasets,
especially with ground-truth clusters. We plan to offer in our framework scalable implementations
of graph and metric clustering algorithms, and our overarching goal is to provide an easy-to-use
API to compare various clustering algorithms and better understand the use-cases of each. In this
spirit, we plan to also develop a pipeline for evaluating clustering algorithms, with classic statistics
relating to clustering density and quality as well as comparisons to ground-truth data.

We additionally plan to introduce new highly efficient clustering algorithms as a part of this
framework, and demonstrate their effectiveness in terms of speed and quality on real-world data.
Different clustering algorithms offer different challenges in terms of effective parallelization and
scalability, such as unavoidable sequential dependencies and objective functions that are NP-hard
to optimize [59,188]. In our work, we explore approximation guarantees and practical heuristics to
approach these difficulties [56,188]. Notably, we have developed a highly scalable parallel correlation
clustering implementation that can cluster graphs with hundreds of millions of edges in under 10
minutes on a 30-core machine with 240 GiB of main memory. Our implementation heuristically
relaxes convergence and consistency guarantees to achieve these speeds, but matches the precision
and recall of its sequential counterpart on ground truth data [188]. Our plan is to develop a
parallel high-dimensional k-means algorithm and implementation as well. We further note that
our subgraph decomposition algorithms and implementations [189, 190, 192] also naturally output
hierarchical clusters and communities of graphs, and as such can be viewed as clusterers in their
own right. We plan to incorporate these works into our framework.

5.1 Related Work
Graph clustering is an expansive topic with many approaches, including modularity and correlation
optimization [43, 156, 215], hierarchical clustering [116, 124, 154, 196], spectral clustering [157, 191,
224], partitional clustering [114,136,142], clique percolation [162], k-core decomposition [83], among
others. Surveys of various algorithms can be found in Fortunato [78] and Fang et al. [68], and
existing libraries with implementations for multiple community detection algorithms include the
Stanford Network Analysis Project (SNAP) [129], NetworKit [197], and Neo4j [152]. Moreover,
there exist a multitude of standalone scalable graph clustering implementations with demonstrably
good quality on real-world datasets with various tradeoffs, including affinity clustering [23], Scalable
Community Detection (SCD) [168], correlation clustering [188], and hierarchical agglomerative
clustering [56,202].
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Moreover, once a clustering is obtained, there exists the important question of how to measure
the quality of a clustering, either with or without ground-truth clusters available. There are a variety
of well-known unsupervised quality metrics, including objective functions such as modularity [84]
and conductance [111, 191], density metrics such as edge and clique density [85, 209], and the
Dasgupta cost for hierarchical clusterings [51]. We note that many of these metrics can be trivially
computed in parallel. Notably, Leskovec et al. [128] introduce the network community profile (NCP)
plot, which captures the communities with the smallest conductances over different sizes, revealing
the underlying structures of “good” clusters in these graphs. Shun et al.’s [193] work on fast parallel
algorithms for local graph clustering allows for efficient generation of NCP plots.

In the specific example of correlation clustering, the LambdaCC framework by Veldt et al. [215]
optimizes for a general objective that spans the classic modularity [84] and correlation cluster-
ing [21] objectives. Veldt et al. show that LambdaCC framework unifies several quality measures,
including modularity, sparsest cut, cluster deletion, and a general version of correlation clustering.
Optimization for correlation clustering has been studied empirically in the case of complete graphs,
which is equivalent to LambdaCC objective with resolution γ = 0.5 [64, 163]. In this restricted
setting, several scalable parallel implementations have been obtained based on the KwikCluster
algorithm [41, 80, 163]. We observe that KwikCluster typically obtains a negative LambdaCC
objective, which significantly limits its practical applicability. In the special case of the modu-
larity objective, scalable modularity clustering has been extensively studied both in the shared-
memory [72,76,90,138,197,229] and distributed memory [82,170,172,183] settings. The two fastest
implementations that we identify are NetworKit [197] and Grappolo [82, 90]. Both of them offer
comparable performance, but we observed the NetworKit typically computes solutions with slightly
larger objective, and thus we compare to NetworKit in our empirical evaluation.

In the metric setting, k-means clustering is a well-known local search algorithm that partitions
points into a fixed number of clusters by minimizing the sum of squared distances between each point
and its cluster center [77, 136,142,198]. Theoretically, optimizing for the k-means objective is NP-
hard, but there are a multitude of algorithms that achieve constant factor approximations [5,42,101,
112,125]. Notably, while k-means clustering can be exponential in the worst-case [13,214], Ostrovsky
et al. [160] and Arthur and Vassilvitskii [14] independently showed that a careful selection of initial
cluster centers leads to faster convergence in practice while maintaining theoretical guarantees on
quality. Parallel k-means clustering is well-studied in a variety of practical settings, including in
MapReduce and Message Passing Interface (MPI) models in distributed environments [27, 50, 53,
118,119,231,237]. Other methods to speed up k-means clustering in parallel include using smaller
coresets to represent larger datasets [16, 17, 20, 36, 74, 75, 93, 120, 139], reducing redundant distance
computations [89,119,200], and intelligently initializing cluster centroids in parallel [19, 27].

5.2 Correlation Clustering
A major challenge in graph clustering is to design algorithms that can achieve fast speed at high scale
while retaining high quality as evaluated on data sets with ground truth. Many graph clustering
algorithms have been proposed to address this challenge, and our goal is to develop a state-of-the-
art algorithm from both speed and quality perspectives. In particular, in our work [188], we adopt
a new LambdaCC framework, introduced by Veldt et al. [215], which provides a general objective
encompassing modularity [84] and correlation clustering [21]. Modularity is a widely-used objective
that is formally defined as the fraction of edges within clusters minus the expected fraction of edges
within clusters, assuming random distribution of edges. The goal of correlation clustering is to
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maximize agreements or minimize disagreements, where agreements and disagreements are defined
based on edge weights indicating similarity and dissimilarity.

It is NP-hard to approximate modularity within a constant factor [59], so optimizing for modu-
larity, and by extension optimizing for the LambdaCC objective, is inherently difficult. The most
successful and widely-used modularity clustering implementations focus on heuristic algorithms,
notably the popular Louvain method [30]. The Louvain method has been well-studied for use in
modularity clustering, with highly optimized heuristics and parallelizations that allow them to scale
to large real-world networks [138,197,207,208].

We design, implement, and evaluate a generalized sequential and shared-memory parallel frame-
work for Louvain-based algorithms including modularity and correlation clustering. We optimize
the LambdaCC objective with state-of-the-art empirical performance, scaling to graphs with bil-
lions of edges. We also show that there is an inherent bottleneck to efficiently parallelizing the
Louvain method, in that the problem of obtaining a clustering matching that given by the Louvain
method on the LambdaCC objective, is P-complete. As such, we explore heuristic optimizations
and relaxations of the Louvain method, and demonstrate their quality and performance trade-offs
for the LambdaCC objective.

As part of our comprehensive empirical study, we show that our sequential implementation is
orders of magnitude faster than the proof-of-concept implementation of Veldt et al. [215]. We note
that for both LabmdaCC and correlation clustering objective, we are unaware of any existing
implementation that would scale to even million-edge graphs and achieve comparable quality. We
further show that our parallel implementations obtain up to 28.44x speedups over our sequential
baselines on a 30-core machine with 2-way hyperthreading.

Moreover, we show that optimizing for the correlation clustering objective is of particular impor-
tance, by studying cluster quality with respect to ground truth data. We observe that optimizing
for correlation clustering yields higher quality clusters than the ones obtained by optimizing for
the celebrated modularity objective. In addition, we compare our implementation to two other
prominent scalable algorithms for community detection: Tectonic [212] and SCD [168] and in both
cases obtain favorable results, improving both the performance and quality. Finally, even in the
highly competitive and extensively studied area of optimizing for modularity, we obtain an up to
3.5x speedup over a highly optimized parallel shared-memory modularity clustering implementation
in NetworKit [197].

5.3 Future Work

Open-source clustering. We plan to develop a shared-memory parallel graph and metric cluster-
ing framework that demonstrates good quality on real-world data. Importantly, while there exist
scalable graph clustering implementations with different theoretical guarantees and optimizing for
different objectives [23,56,168,188,202], it is unclear how these implementations compare to one an-
other and in which settings each implementation is preferable. We plan to benchmark these existing
implementations, as well as incorporate our own fast implementations into an easy-to-use API with
a streamlined parallel evaluation pipeline that can collect metrics and comparisons to ground-truth
data. Graph clustering algorithms of interest include affinity clustering [23] and Scalable Com-
munity Detection (SCD) [168], correlation clustering and modularity clustering [188], hierarchical
agglomerative clustering [56], clique percolation [189] and (r, s) nucleus decomposition [190], Tec-
tonic [212], among others. Clustering metrics of interest include network community profile (NCP)
plots [128], modularity [84], conductance [111, 191], edge and clique density [85, 209], Dasgupta
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cost and purity [51], Adjusted Rand Index (ARI) [99, 199] and Normalized Mutual Information
(NMI) [49,201], precision and recall, among others.

Moreover, we plan to explore metric clustering algorithms and implementations, including DB-
SCAN [221], hierarchical agglomerative clustering [228], k-means clustering [19], among others. We
also plan to incorporate graph building techniques such as k-NN to allow us to explore the quality
and performance of graph clustering algorithms on pointsets.
k-means clustering. We additionally plan to develop scalable parallel algorithms and imple-
mentations for high-dimensional k-means clustering, particularly for large k. While there is a
wealth of prior work on parallel k-means clustering, approaches using coresets do not scale to large
k [16, 17, 20, 36, 74, 75, 93, 120, 139] and techniques for fast centroid initialization do not explore
other optimizations for speedup up the main Lloyd iterations [19, 27]. We plan to explore opti-
mizations that reduce distance computations through use of graph building techniques and efficient
locality-sensitive hashing (LSH).

6 Schedule
• Summer 2022 – Fall 2022: Finish work on developing parallel algorithms and implementa-

tions for a (r, s) nucleus decomposition hierarchy, approximate (r, s) nucleus decomposition,
and dynamic (r, s) nucleus decomposition. Also, finish work on an open-source graph cluster-
ing framework, integrated with the Google graph clustering library and with benchmarking
experiments. Give seminar talks on ongoing work at various venues.

• Fall 2022: Work with a SuperUROP student on finishing various (r, s) nucleus decomposition
algorithms. Also, apply for jobs.

• Summer 2022 – Winter 2022: Finish work on scalable k-means clustering algorithms with
Google.

• Winter 2022 – Spring 2023: Work on a parallel general subgraph counting framework with
modularized graph orientation algorithms and practical optimizations. Look into develop-
ing theoretically efficient parallel algorithms for k-vertex subgraph counting where k ≥ 6.
Also, work on an open-source metric clustering framework, integrated with the Google metric
clustering library and with benchmarking experiments.

• Spring 2023: Write and defend thesis.
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