
Parallel Five-Cycle Counting
Algorithms

Louisa Ruixue Huang (MIT CSAIL)
Jessica Shi (MIT CSAIL)
Julian Shun (MIT CSAIL)

Graph Processing

Social Network
https://blog.soton.ac.uk/skillted/2015/04/05/graph-theory-for-skillted/

Financial Transactions
https://www.rtinsights.com/how-the-worlds-largest-banks-use-advanced-

graph-analytics-to-fight-fraud/

Road Network
Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a Major
Power Outage in the Netherlands

Five-Cycle Counting

Friend’s
Account

Criminal

Stolen
Account

MerchantMiddleman

owns

credit pays

owns

transferstransfers

Credit Card Fraud
Real-time Constrained Cycle Detection in Large Dynamic Graphs (Qiu et al.,

2018)

Fake Buyer’s
Account

Seller’s
Account

SellerFriend

transaction

owns

transfers

friend

owns

Merchant Fraud
Real-time Constrained Cycle Detection in Large Dynamic Graphs (Qiu et al.,

2018)

Criminal’s
Account

Bank

pays

k-cycle counting is computationally intensive
Exponential growth in number of possible subgraphs as k increases

ESCAPE [1] package: Counts all five-vertex subgraphs
• 25 – 58% of time in ESCAPE is spent on five-cycles

Theoretical barrier for k-cycle counting for k > 5 [2]

Five-Cycle Counting

[1] Pinar, Seshadhri, Vishal (16)
[2] Bera, Pashanasangi, Seshadhri (20)

Parallelism

Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Main Goal: Design and implement algorithms to efficiently count
five-cycles in a graph

First theoretically efficient parallel algorithms for counting five-cycles
New practical optimizations for fast parallel performance
Comprehensive evaluation

Outperforms previous fastest sequential implementations [1] by up to 818x
Up to 43x self-relative speedups

Main Contributions

[1] Pinar, Seshadhri, Vishal (16)

We present two five-cycle counting algorithms that achieve the
same theoretical complexity
Based on two sequential counterparts:

Kowalik [1] : Theoretically efficient, based on ordered 2-paths
ESCAPE [2] : Based on directed 3-paths
• (We provide an important modification to the serial ESCAPE to make it

theoretically efficient)

Main Contributions

[1] Kowalik (03)
[2] Pinar, Seshadhri, Vishal (16)

Strong theoretical bounds

Work = total # operations = # vertices

in graph

Span = longest dependency path =

longest directed path

Running Time ≤ (work / #

processors) + O(span)

Work-efficient = work matches

sequential time complexity

Important paradigms

Parallel computation graph

https://www.researchgate.net/figure/Task-dependency-graph-

each-node-contains-the-task-time-and-the-highlighted-tasks-

form_fig1_320678407

Arboricity Orientation: Direct graph such that each vertex’s out-
degree is upper bounded by O(⍺)
⍺ = arboricity/degeneracy (O(√#))
m = # edges
Can compute in O(m) work, O(log2 n) span [1]

Degree Ordering: Order vertices by non-increasing degree
Lemma [2] : ∑(&,()∈+ min / 0 , / 1 ≤ 2⍺#

Graph Ordering and Orientation

[1] Shi, Dhulipala, Shun (21)
[2] Chiba, Nishizeki (85)

Parallel Five-Cycle Counting
Algorithm (based on Kowalik)

u

Wedges

Wedge = P2 =

Endpoints

Center

Lowest Ranked Vertex
(in degree ordering)

v

w

= (v, u, w)

To avoid double counting, we find all cycles from the
lowest ranked vertex in the cycle

rank(v) < rank(u)
rank(v) < rank (w)

Parallel for each wedge (v, u, w): (unique via degree ordering)

Consider now the arboricity oriented graph
Parallel for each arboricity directed neighbor x of w, such that
x is after v in degree ordering: (unique three-path)

• # of wedges with endpoints v and x complete the cycle

Main Idea

v
u

wx

We must address incorrect counting when finding wedges with
endpoints v and x:

Incorrect Counting

v
u

wx w

v
u

x

v
u

wx

= wedges that do not complete five-cycles

= wedges that do complete five-cycles

For each vertex v:
Parallel hash table:
Uv : keys = second endpoint

values = # of wedges with endpoint v

For each pair of vertices (v, u):
Parallel hash table:
Tv, u : keys = second endpoint

values = # of wedges with endpoint v and center u

Data Structures for Wedges

1

0

2 3

(1, 1) (2, 2) (3, 1)U0 :

(1, 1) (3, 1)T0, 2 :

endpoint count

Data Structures for Wedges

1 4

0

2 3

5 (1, 1) (2, 2) (3, 2) (4, 1) (5, 2)

U0 : # of wedges with endpoints (0, key)

(2, 1) (5, 1)

T0, 1

(1, 1) (3, 1)

T0, 2

(2, 1) (4, 1)

T0, 3

(3, 1) (5, 1)

T0, 4

T0, u : # of wedges (0, u, key)
Vertex IDs in degree ordering

Five-Cycle Counting Example

1 4

0

2 3

5

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 1, 2)
Directed edge (w, x) : (2, 3)
Number of (v, x) wedges : U0[3] = 2
(v, w) is an edge : Subtract 1
Tv, u [x] = 0 : Subtract 0

(2, 1) (5, 1)

T0, 1 : (0, 1, key)

(1, 1) (2, 2) (3, 2) (4, 1) (5, 2)

U0 : # of wedges with endpoints (0, key)

1 cycle

v

u

w x

Five-Cycle Counting Example

1 4

0

2 3

5

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 1, 5)
Directed edge (w, x) : (5, 4)
Number of (v, x) wedges : U0[4] = 1
(v, w) is not an edge : Subtract 0
Tv, u [x] = 0 : Subtract 0

(2, 1) (5, 1)

T0, 1 : (0, 1, key)

(1, 1) (2, 2) (3, 2) (4, 1) (5, 2)

U0 : # of wedges with endpoints (0, key)

1 cycle

v

u

w

x

Five-Cycle Counting Example

1 4

0

2 3

5

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 2, 1)
No directed edges (w, x)

0 cycles

v

u

w

Five-Cycle Counting Example

1 4

0

2 3

5

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 4, 5)
Directed edge (w, x) : (5, 1)
Number of (v, x) wedges : U0[1] = 1
(v, w) is not an edge : Subtract 0
Tv, u [x] = 0 : Subtract 0

(3, 1) (5, 1)

T0, 4 : (0, 4, key)

(1, 1) (2, 2) (3, 2) (4, 1) (5, 2)

U0 : # of wedges with endpoints (0, key)

1 cycle

v

u

w

x

Five-Cycle Counting Example

1 4

2 3

5

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (1, 2, 3)
Directed edge (w, x) : (3, 4)
Number of (v, x) wedges : U0[4] = 1
(v, w) is not an edge : Subtract 0
Tv, u [x] = 0 : Subtract 0

(3, 1)

T1, 2 : (1, 2, key)

(3, 1) (4, 1)

U1 : # of wedges with endpoints (1, key)

1 cycle

In total: 4 cycles

v

u w

x

Lemma [1] : Total # of wedges = ∑(#,%)∈(min , - , , . ≤ 2⍺2
Arboricity orientation: O(m) work, O(log2 n) span [2]

Degree ordering: O(n) work, O(log n) span whp [3]

Constructing hash tables U, T: O(m⍺) work, O(log* n) span whp
Extending a wedge with a directed edge: Multiply by ⍺ for the work

Theoretical Bounds

[1] Chiba, Nishizeki (85)
[2] Shi, Dhulipala, Shun (21)
[3] Rajasekaran, Reif (89)

Total = O(m⍺2) work, O(log2 n) span whp

Parallel Five-Cycle Counting
Algorithm (based on ESCAPE)

Arboricity Oriented Wedges

Inout-Wedge =

Endpoints Center

Out-Wedge =
v

u

v

u

All possible acyclic orientations of directed five-cycles:

Main Idea

v

u w

x v

u w

x v

u w

x

Inout-wedge (x to v) Out-wedge Inout-wedge (v to x)

= directed three-path

Parallel for every (v u w x): (unique via arboricity ordering)

of inout- and out-wedges with endpoints v and x complete
the cycle
Incorrect counting (check if (w, v) or (x, u) are edges):

Main Idea

v

u w

x

w

v

u

x

u

x

w

v

= wedges that do not complete five-cycles

= wedges that do complete five-cycles

Arboricity orientation: O(m) work, O(log2 n) span [1]

Constructing hash table U: O(m⍺) work, O(log* n) span whp
Iterating over 3-paths: O(m⍺2) 3-paths

Theoretical Bounds

[1] Shi, Dhulipala, Shun (21)

Total = O(m⍺2) work, O(log2 n) span whp

Evaluation

Thread-local Data Structures:
Space for parallel hash tables per vertex only allocated once per
processor

Fast Reset:
Additional thread-local array to mark used hash table entries

Work Scheduling:
Group vertices by estimating work, such that work per group is equal
Estimate given by sum of degrees of neighbors
Parallelize between groups

Optimizations

c5.18xlarge AWS EC2 instance: dual-processor, 18 cores per processor (2-
way hyper-threading), 144 GiB main memory
Cilk Plus[1] work-stealing scheduler
Real-world Stanford Network Analysis Platform (SNAP) graphs

Environment

[1] Leiserson (10)

Graph # Vertices # Edges # 5-cycles
email 1005 32128 2.45 x 108

dblp 425957 2.10 x 106 3.44 x 109

youtube 1.16 x 106 5.98 x 106 3.46 x 1010

lj 4.03 x 106 6.94 x 107 6.67 x 1012

orkut 3.27 x 106 2.34 x 108 4.25 x 1013

friendster 1.25 x 108 3.61 x 109 9.63 x 1013

Main Running Times

36h-Thread Kowalik:
(fastest)

Main Running Times

36h-Thread Kowalik:
(fastest)

Up to 32.2x speedups over best sequential implementation
Up to 818.12x speedups over ESCAPE package
8417.3 s on friendster graph

Binary Searches in Kowalik vs ESCAPE

Work Scheduling

Conclusion

New parallel algorithms for five-cycle counting
Strong theoretical bounds + fast performance

Github:
https://github.com/ParAlg/gbbs/tree/master/benchmarks/Cycle
Counting

Conclusion

https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting

Thank You

Scalability of Parallel Kowalik

Dashed line = With work scheduling
Solid line = Without work scheduling

