Parallel Five-Cycle Counting
Algorithms

Louisa Ruixue Huang (MIT CSAIL)
Jessica Shi (MIT CSAIL)

Julian Shun (MIT CSAIL)

Graph Processing

g Used with

Social Network

https://blog.soton.ac.uk/skillted/2015/04/05/graph-theory-for-skillted/

Froq

Account 2 Bank of Montreal

Email 1 American Express

| X Financial Transactions

ey frmste]vee B \ Y N\ https://www.rtinsights.com/how-the-worlds-largest-banks-use-advanced-
graph-analytics-to-fight-fraud/

Kerk

Road Network

Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a Major
Power Outage in the Netherlands

S

Five-Cycle Counting

Fake Buyer’s

Account
transfers transaction
Friend’s Seller’s
Account Account
owns owns

Friend friend Seller

Merchant Fraud

Real-time Constrained Cycle Detection in Large Dynamic Graphs (Qiu et al.,
2018)

Criminal’s
Account

Criminal

owns

Stolen
Account
transfers credit pays
pays
Middleman Merchant

Bank
Credit Card Fraud

Real-time Constrained Cycle Detection in Large Dynamic Graphs (Qiu et al.,
2018)

Five-Cycle Counting

e k-cycle counting is computationally intensive
» Exponential growth in number of possible subgraphs as k increases
o ESCAPE ! package: Counts all five-vertex subgraphs
* 25 -58% of time in ESCAPE is spent on five-cycles
 Theoretical barrier for k-cycle counting for k > 5 2]

[1] Pinar, Seshadhri, Vishal (16)
[2] Bera, Pashanasangi, Seshadhri (20)

Parallelism

e Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Main Contributions

e Vlain Goal: Design and implement algorithms to efficiently count
five-cycles in a graph

e First theoretically efficient parallel algorithms for counting five-cycles
e New practical optimizations for fast parallel performance

e Comprehensive evaluation
« Outperforms previous fastest sequential implementations 1! by up to 818x
« Up to 43x self-relative speedups

[1] Pinar, Seshadhri, Vishal (16)

Main Contributions

e We present two five-cycle counting algorithms that achieve the
same theoretical complexity

e Based on two sequential counterparts:

» Kowalik 11 Theoretically efficient, based on ordered 2-paths
« ESCAPE [2I': Based on directed 3-paths

* (We provide an important modification to the serial ESCAPE to make it
theoretically efficient)

[1] Kowalik (03)
[2] Pinar, Seshadhri, Vishal (16)

Important paradigms

e Strong theoretical bounds Parallel computation graph

« Work = total # operations = # vertices
in graph

» Span = longest dependency path =

longest directed path ° o
C

o Running Time < (work / #
processors) + O(span)

o Work-efficient = work matches
sequential time complexity

https://www.researchgate.net/figure/Task-dependency-graph-
each-node-contains-the-task-time-and-the-highlighted-tasks-
form_figl_320678407

Graph Ordering and Orientation

e Arboricity Orientation: Direct graph such that each vertex’s out-
degree is upper bounded by O(a)
. o = arboricity/degeneracy (0(V'm))
« M =# edges
» Can compute in O(m) work, O(log? n) span 1]

e Degree Ordering: Order vertices by non-increasing degree

o Lemma 2} ek min(d(u),d(v)) < 2am

[1] Shi, Dhulipala, Shun (21)
[2] Chiba, Nishizeki (85)

Parallel Five-Cycle Counting
Algorithm (based on Kowalik)

Lowest Ranked Vertex
/ (in degree ordering)
V rank(v) < rank(u)

rank(v) < rank (w)

Wedge =P, = = (v, u, w)

Endpoints < u

W Center

To avoid double counting, we find all cycles from the
lowest ranked vertex in the cycle

Main ldea

e Parallel for each wedge (v, u, w):
« Consider now the arboricity oriented graph

« Parallel for each arboricity directed neighbor x of w, such that
X is after v in degree ordering:

* ## of wedges with endpoints v and x complete the cycle
\")

Incorrect Counting

e We must address incorrect counting when finding wedges with
endpoints v and x: == = = wedges that do not complete five-cycles

=== = wedges that do complete five-cycles

Data Structures for Wedges

For each vertex v:

1 Ug:| (1,1) (2,2) (3, 1)
Parallel hash table:
U, : keys = second endpoint 2 3 T \
values = # of wedges with endpoint v endpoint count

For each pair of vertices (v, u): X /

Parallel hash table: To oo (LT

(3,1)

T, . - keys = second endpoint

values = # of wedges with endpoint v and center u

Data Structures for Wedges

U, : # of wedges with endpoints (0, key)

0 > (1L1) | 22 | 32 | 41 | (52)
TO, 1 TO, 3
1 (2,1) | (51) (2,1) | 41)
T T
2 3 0,2 0,4
(1,1) | (3,1) (3,1) | (51)
Vertex IDs in degree ordering

Ty - # of wedges (0, u, key)

Five-Cycle Counting Example

2 W x 3

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 1, 2)

Directed edge (w, x) : (2, 3)
Number of (v, x) wedges : U,[3] = 2
(v, w) is an edge : Subtract 1
T, ,[x] =0:Subtract0

Uy : # of wedges with endpoints (0, key)

1 cycle

(1,1)

(2, 2)

(3, 2)

(4,1)

(5, 2)

To,1:(0, 1, key)

(2,1)

(5, 1)

Five-Cycle Counting Example

. W Wedge (v, u, w) : (0, 1, 5)
0 5 Directed edge (w, x) : (5, 4)
Number of (v, x) wedges : U,[4] =1
u x (v, w) is not an edge : Subtract 0
1 4 T,,[x]=0:SubtractO
’ 1 cycle
Uy : # of wedges with endpoints (0, key)

2 3 (1,1) | (22 | 3,2 | 41) | (52)

Vertex IDs in degree ordering, To 1:(0, 1, key)

Arrows in arboricity orientation

(2, 1) (5, 1)

Five-Cycle Counting Example

) 3

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 2, 1)
No directed edges (w, x)

O cycles

Five-Cycle Counting Example

. W Wedge (v, u, w) : (0, 4, 5)
0 5 Directed edge (w, x) : (5, 1)
Number of (v, x) wedges : U,[1] =1
» u (v, w)is not an edge : Subtract O
1 4 T,,[x]=0:SubtractO
’ 1 cycle
Uy : # of wedges with endpoints (0, key)

2 3 (1,1) | 2,2) | (3,2 | 41) | (52)

Vertex IDs in degree ordering, To 4:(0, 4, key)

Arrows in arboricity orientation

(3, 1) (5, 1)

Five-Cycle Counting Example

2 U w 3

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (1, 2, 3)
Directed edge (w, x) : (3, 4)

Number of (v, x) wedges : U,[4] =1

(v, w) is not an edge : Subtract 0
T, ,[x] =0:Subtract0

1 cycle

U, : # of wedges with endpoints (1, key)

(3, 1) (4, 1)

In total: 4 cycles

T, ,:(1, 2, key)

(3,1)

Theoretical Bounds

o Lemma lll: Total # of wedges = X, ,yer min(d(u), d(v)) < 2am

o Arboricity orientation: O(m) work, O(log? n) span 2]

e Degree ordering: O(n) work, O(log n) span whp B!

e Constructing hash tables U, T: O(ma) work, O(log™ n) span whp

e Extending a wedge with a directed edge: Multiply by a for the work

Total = O(ma?) work, O(log? n) span whp

[1] Chiba, Nishizeki (85)
[2] Shi, Dhulipala, Shun (21)
[3] Rajasekaran, Reif (89)

Parallel Five-Cycle Counting
Algorithm (based on ESCAPE)

Arboricity Oriented Wedges

Inout-Wedge =

v
Endpoints < > <«— Center
u

Vv

Out-Wedge = >

U

Main ldea

e All possible acyclic orientations of directed five-cycles:

Inout-wedge (x to v) Out-wedge Inout-wedge (v to x)

=== = directed three-path

Main ldea

e Parallel for every (ve=uew—X):

 # of inout- and out-wedges with endpoints v and x complete
the cycle

« Incorrect counting (check if (w, v) or (x, u) are edges):
== = = wedges that do not complete five-cycles

=== = wedges that do complete five-cycles

Theoretical Bounds

e Arboricity orientation: O(m) work, O(log? n) span 1]
e Constructing hash table U: O(ma) work, O(log™ n) span whp
e lterating over 3-paths: O(ma?) 3-paths

Total = O(ma?) work, O(log? n) span whp

[1] Shi, Dhulipala, Shun (21)

Fvaluation

Optimizations

e Thread-local Data Structures:

» Space for parallel hash tables per vertex only allocated once per
processor

e Fast Reset:
» Additional thread-local array to mark used hash table entries

e Work Scheduling:

» Group vertices by estimating work, such that work per group is equal
» Estimate given by sum of degrees of neighbors
» Parallelize between groups

Environment

e c5.18xlarge AWS EC2 instance: dual-processor, 18 cores per processor (2-
way hyper-threading), 144 GiB main memory

e Cilk Plus!! work-stealing scheduler
e Real-world Stanford Network Analysis Platform (SNAP) graphs

email 1005 32128 2.45 x 108
dblp 425957 2.10 x 10° 3.44 x 10°
youtube 1.16 x 10° 5.98 x 10° 3.46 x 101°
lj 4.03 x 10° 6.94 x 10’/ 6.67 x 102
orkut 3.27 x 10° 2.34 x 108 4.25 x 1013
[1] Leiserson (10) friendster 1.25 x 108 3.61 x 10° 9.63 x 1013

Main Running Times

Serial Kowalik = 1-Thread Kowalik 7Serial Escape
“]-Thread Escape E236h-Thread Escape

N

s

—_
-
(N)

%%
AR aaes

R
2
et
22

Multiplicative Slowdown

e e
X AR XX

mEEEEEEEEEEmEmwal

EEEmEmEEEEEEEEEEI

H HHH

p—t
-
—_
Z,
[T

[T

[T

E

email ablb youtube 1 orkut
36h-Thread Kowalik: (0.0025 s) (0.014 s) (0.33 s) (5.859) (136.98 s)
(fastest)

=

i
weilliaas
52 HHH

Main Running Times

e Up to 32.2x speedups over best sequential implementation
e Up to 818.12x speedups over ESCAPE package

e 8417.3 s on friendster graph

LLl
an
<
O
V)
LLl
n
>
—
©
=
O
AV
=
n
)
.
O
S
qe)
<)
V)
=
—
(O
=
e

LG R R R IR R R R R IR R R R R IR I R R R IR IR R IR IR IR R
BB R
0202020202020 2020200 2o %0 22 e et Do tete Yo Te et te e Te o Rotete Yot R tete e e Rotete tete o tete e te ot tete Yot e te e et Rete Yo te e teete et o ete et e e te e te e tete e te e e e te e e e e e Yot e e

Escape

R
000000 %% %% 0000

%
1220270 % %0 %% 20 %%

orkut

youtube

XX I KX EXIRKZ LI R XL KIS
R
RRRIRRIERRRKRARRKS

T3
X 2 %
ZO0HHARLIIRLIRHKIXIXH KRS

9
20%6% %% 16%6% % %% %"6%% %% 6% %% %"

V222777

dblp

RS
$.0.0.0.0.0.0.0.0.0

email

Work Scheduling

Multiplicative Speedup over
No Work Scheduling
DO O — Ot &N =~J

WKowalik EEscape

%
KRR
RRRKKY
XX

3
%
o
%%

o
o
ot

X
dodet

EXXRITKS
0RRRXRS
LKBRKKK

$a%e%tete% % %

L
SRR

X

XS

%%

%
3535

X3
dode!

x>
o,

Q%S
XXX

%
b3,
9000,

%
KR
%
X

EREEXS
SRRRRRK
R
a%e% e 00t %

EXX X
XK
‘.’ >

3
o

zs

o

o
oS

<
oo
&
Yo% %

s
s
&

70303

20,

5
%%

o
X
X

voses
3%
p%!

e
¢
X3
X2
o0

o3
2%
5%

<
xR

255
5585

72
X
Po%e8e%¢
e
X
oS
el

%S
XS
%
2%
R
&
%!

>

o

e
5

o
o
0

O
2%
o,

2

X XXX KKK

O 0000 000
SO0 000000 00
Jetetotetetatetetotitetsls

3
SRHRXS
SRR

X
0
X

238
Potatode!
LRRRRKR

R

0.0 000 0.0
SRRRRRK,

RHRRRRRKS
%5

o
X
KX

RS
03000,
K

3

K

3
358

X

%

XS

2RRKS
LK,
2etedeledels

a4

o
0
KL

XX

0. 0.0
XK I
SRR

X
X
xR

%
Q2
XRK

Q2

938,
KL

2RRRRK
atotetetotet
XSRS

b4

o
X

o

3
K&
oo

%
X

oS
KX

X
Q

02

2
RRKS

XXX
XX
RRRRRRR

%

Q2

%
0,

02

30RRX
SO0

X
>,
R

X5

XX

2277777727277

<

P

>
>
R

X
3
X

X
(
R

S,

youtube

Conclusion

Conclusion

e New parallel algorithms for five-cycle counting
e Strong theoretical bounds + fast performance

e Github:

https://github.com/ParAlg/gbbs/tree/master/benchmarks/Cycle
Counting

https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting

Thank You

Scalability of Parallel Kowalik

lj orkut
256 I I 1 I I | I T T T I T T T
o GOOdrid}'PSZOI_la 3200 Il Goodrich-Pszona |
1os L Bl Barenboim-Elkin i B Barenboim-Elkin
— Bl Decgree
= — 1600 |- -
S 64 1 =
Q 0
& S 800 F .
o 321 1 2
5 §=
400 F -
S 16 1 &
— -
3L _ 200 - -
4 1 1 1 | 1 1 1 100 1 1 1 1 1 1 1
1 2 4 8 16 36 36h 1 2 4 8 16 36 36h
Number of Workers Number of Workers

Dashed line = With work scheduling
Solid line = Without work scheduling

