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Five-Cycle Counting
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Five-Cycle Counting

e k-cycle counting is computationally intensive
» Exponential growth in number of possible subgraphs as k increases
o ESCAPE ! package: Counts all five-vertex subgraphs
* 25 -58% of time in ESCAPE is spent on five-cycles
 Theoretical barrier for k-cycle counting for k > 5 2]

[1] Pinar, Seshadhri, Vishal (16)
[2] Bera, Pashanasangi, Seshadhri (20)



Parallelism

e Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP



Main Contributions

e Vlain Goal: Design and implement algorithms to efficiently count
five-cycles in a graph

e First theoretically efficient parallel algorithms for counting five-cycles
e New practical optimizations for fast parallel performance

e Comprehensive evaluation
« Outperforms previous fastest sequential implementations 1! by up to 818x
« Up to 43x self-relative speedups

[1] Pinar, Seshadhri, Vishal (16)



Main Contributions

e We present two five-cycle counting algorithms that achieve the
same theoretical complexity

e Based on two sequential counterparts:

» Kowalik 11 Theoretically efficient, based on ordered 2-paths
« ESCAPE [2I': Based on directed 3-paths

* (We provide an important modification to the serial ESCAPE to make it
theoretically efficient)

[1] Kowalik (03)
[2] Pinar, Seshadhri, Vishal (16)



Important paradigms

e Strong theoretical bounds Parallel computation graph

« Work = total # operations = # vertices
in graph

» Span = longest dependency path =

longest directed path ° o
C

o Running Time < (work / #
processors) + O(span)

o Work-efficient = work matches
sequential time complexity

https://www.researchgate.net/figure/Task-dependency-graph-
each-node-contains-the-task-time-and-the-highlighted-tasks-
form_figl_320678407




Graph Ordering and Orientation

e Arboricity Orientation: Direct graph such that each vertex’s out-
degree is upper bounded by O(a)
. o = arboricity/degeneracy (0(V'm))
« M =# edges
» Can compute in O(m) work, O(log? n) span 1]

e Degree Ordering: Order vertices by non-increasing degree

o Lemma 2} ek min(d(u),d(v)) < 2am

[1] Shi, Dhulipala, Shun (21)
[2] Chiba, Nishizeki (85)



Parallel Five-Cycle Counting
Algorithm (based on Kowalik)



Lowest Ranked Vertex
/ (in degree ordering)
V rank(v) < rank(u)

rank(v) < rank (w)

Wedge =P, = = (v, u, w)

Endpoints < u

W Center

To avoid double counting, we find all cycles from the
lowest ranked vertex in the cycle




Main ldea

e Parallel for each wedge (v, u, w):
« Consider now the arboricity oriented graph

« Parallel for each arboricity directed neighbor x of w, such that
X is after v in degree ordering:

* ## of wedges with endpoints v and x complete the cycle
\")




Incorrect Counting

e We must address incorrect counting when finding wedges with
endpoints v and x: == = = wedges that do not complete five-cycles

=== = wedges that do complete five-cycles




Data Structures for Wedges

For each vertex v:

1 Ug:| (1,1) (2,2) (3, 1)
Parallel hash table:
U, : keys = second endpoint 2 3 T \
values = # of wedges with endpoint v endpoint  count

For each pair of vertices (v, u): X /

Parallel hash table: To oo (LT

(3,1)

T, . - keys = second endpoint

values = # of wedges with endpoint v and center u




Data Structures for Wedges

U, : # of wedges with endpoints (0, key)

0 > (1L1) | 22 | 32 | 41 | (52)
TO, 1 TO, 3
1 (2,1) | (51) (2,1) | 41)
T T
2 3 0,2 0,4
(1,1) | (3,1) (3,1) | (51)
Vertex IDs in degree ordering

Ty - # of wedges (0, u, key)




Five-Cycle Counting Example

2 W x 3

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 1, 2)

Directed edge (w, x) : (2, 3)
Number of (v, x) wedges : U,[3] = 2
(v, w) is an edge : Subtract 1
T, ,[x] =0:Subtract0

Uy : # of wedges with endpoints (0, key)

1 cycle

(1,1)

(2, 2)

(3, 2)

(4,1)

(5, 2)

To,1:(0, 1, key)

(2,1)

(5, 1)




Five-Cycle Counting Example

. W Wedge (v, u, w) : (0, 1, 5)
0 5 Directed edge (w, x) : (5, 4)
Number of (v, x) wedges : U,[4] =1
u x (v, w) is not an edge : Subtract 0
1 4 T,,[x]=0:SubtractO
’ 1 cycle
Uy : # of wedges with endpoints (0, key)

2 3 (1,1) | (22 | 3,2 | 41) | (52)

Vertex IDs in degree ordering, To 1:(0, 1, key)

Arrows in arboricity orientation

(2, 1) (5, 1)




Five-Cycle Counting Example

) 3

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (0, 2, 1)
No directed edges (w, x)

O cycles




Five-Cycle Counting Example

. W Wedge (v, u, w) : (0, 4, 5)
0 5 Directed edge (w, x) : (5, 1)
Number of (v, x) wedges : U,[1] =1
» u (v, w)is not an edge : Subtract O
1 4 T,,[x]=0:SubtractO
’ 1 cycle
Uy : # of wedges with endpoints (0, key)

2 3 (1,1) | 2,2) | (3,2 | 41) | (52)

Vertex IDs in degree ordering, To 4:(0, 4, key)

Arrows in arboricity orientation

(3, 1) (5, 1)




Five-Cycle Counting Example

2 U w 3

Vertex IDs in degree ordering,
Arrows in arboricity orientation

Wedge (v, u, w) : (1, 2, 3)
Directed edge (w, x) : (3, 4)

Number of (v, x) wedges : U,[4] =1

(v, w) is not an edge : Subtract 0
T, ,[x] =0:Subtract0

1 cycle

U, : # of wedges with endpoints (1, key)

(3, 1) (4, 1)

In total: 4 cycles

T, ,:(1, 2, key)

(3,1)




Theoretical Bounds

o Lemma lll: Total # of wedges = X, ,yer min(d(u), d(v)) < 2am

o Arboricity orientation: O(m) work, O(log? n) span 2]

e Degree ordering: O(n) work, O(log n) span whp B!

e Constructing hash tables U, T: O(ma) work, O(log™ n) span whp

e Extending a wedge with a directed edge: Multiply by a for the work

Total = O(ma?) work, O(log? n) span whp

[1] Chiba, Nishizeki (85)
[2] Shi, Dhulipala, Shun (21)
[3] Rajasekaran, Reif (89)



Parallel Five-Cycle Counting
Algorithm (based on ESCAPE)



Arboricity Oriented Wedges

Inout-Wedge =

v
Endpoints < > <«— Center
u

Vv

Out-Wedge = >

U




Main ldea

e All possible acyclic orientations of directed five-cycles:

Inout-wedge (x to v) Out-wedge Inout-wedge (v to x)

=== = directed three-path




Main ldea

e Parallel for every (ve=uew—X):

 # of inout- and out-wedges with endpoints v and x complete
the cycle

« Incorrect counting (check if (w, v) or (x, u) are edges):
== = = wedges that do not complete five-cycles

=== = wedges that do complete five-cycles




Theoretical Bounds

e Arboricity orientation: O(m) work, O(log? n) span 1]
e Constructing hash table U: O(ma) work, O(log™ n) span whp
e lterating over 3-paths: O(ma?) 3-paths

Total = O(ma?) work, O(log? n) span whp

[1] Shi, Dhulipala, Shun (21)



Fvaluation



Optimizations

e Thread-local Data Structures:

» Space for parallel hash tables per vertex only allocated once per
processor

e Fast Reset:
» Additional thread-local array to mark used hash table entries

e Work Scheduling:

» Group vertices by estimating work, such that work per group is equal
» Estimate given by sum of degrees of neighbors
» Parallelize between groups



Environment

e c5.18xlarge AWS EC2 instance: dual-processor, 18 cores per processor (2-
way hyper-threading), 144 GiB main memory

e Cilk Plus!! work-stealing scheduler
e Real-world Stanford Network Analysis Platform (SNAP) graphs

email 1005 32128 2.45 x 108
dblp 425957 2.10 x 10° 3.44 x 10°
youtube 1.16 x 10° 5.98 x 10° 3.46 x 101°
lj 4.03 x 10° 6.94 x 10’/ 6.67 x 102
orkut 3.27 x 10° 2.34 x 108 4.25 x 1013
[1] Leiserson (10) friendster 1.25 x 108 3.61 x 10° 9.63 x 1013



Main Running Times
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Main Running Times

e Up to 32.2x speedups over best sequential implementation
e Up to 818.12x speedups over ESCAPE package

e 8417.3 s on friendster graph
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Work Scheduling

Multiplicative Speedup over
No Work Scheduling
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Conclusion



Conclusion

e New parallel algorithms for five-cycle counting
e Strong theoretical bounds + fast performance

e Github:

https://github.com/ParAlg/gbbs/tree/master/benchmarks/Cycle
Counting



https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting

Thank You



Scalability of Parallel Kowalik
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