Parallel Five-Cycle Counting Algorithms

Louisa Ruixue Huang (MIT CSAIL)

Jessica Shi (MIT CSAIL)

Julian Shun (MIT CSAIL)

Graph Processing

Social Network

https://blog.soton.ac.uk/skillted/2015/04/05/graph-theory-for-skillted/

Road Network

Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a Major Power Outage in the Netherlands

Financial Transactions

https://www.rtinsights.com/how-the-worlds-largest-banks-use-advanced-graph-analytics-to-fight-fraud/

Five-Cycle Counting

Merchant Fraud

Real-time Constrained Cycle Detection in Large Dynamic Graphs (Qiu et al., 2018)

Credit Card Fraud

Real-time Constrained Cycle Detection in Large Dynamic Graphs (Qiu et al., 2018)

Five-Cycle Counting

- k-cycle counting is computationally intensive
 - Exponential growth in number of possible subgraphs as k increases
 - ESCAPE [1] package: Counts all five-vertex subgraphs
 - 25 58% of time in ESCAPE is spent on five-cycles
 - Theoretical barrier for k-cycle counting for k > 5 [2]

- [1] Pinar, Seshadhri, Vishal (16)
- [2] Bera, Pashanasangi, Seshadhri (20)

Parallelism

Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Main Contributions

 Main Goal: Design and implement algorithms to efficiently count five-cycles in a graph

- First theoretically efficient parallel algorithms for counting five-cycles
- New practical optimizations for fast parallel performance
- Comprehensive evaluation
 - Outperforms previous fastest sequential implementations [1] by up to 818x
 - Up to 43x self-relative speedups

Main Contributions

- We present two five-cycle counting algorithms that achieve the same theoretical complexity
- Based on two sequential counterparts:
 - Kowalik [1]: Theoretically efficient, based on ordered 2-paths
 - ESCAPE [2]: Based on directed 3-paths
 - (We provide an important modification to the serial ESCAPE to make it theoretically efficient)

- [1] Kowalik (03)
- [2] Pinar, Seshadhri, Vishal (16)

Important paradigms

- Strong theoretical bounds
 - Work = total # operations = # vertices in graph
 - Span = longest dependency path = longest directed path
 - Running Time ≤ (work / # processors) + O(span)
 - Work-efficient = work matches sequential time complexity

Parallel computation graph

https://www.researchgate.net/figure/Task-dependency-graph-each-node-contains-the-task-time-and-the-highlighted-tasks-form_fig1_320678407

Graph Ordering and Orientation

- Arboricity Orientation: Direct graph such that each vertex's outdegree is upper bounded by $O(\alpha)$
 - α = arboricity/degeneracy (O(\sqrt{m}))
 - m = # edges
 - Can compute in O(m) work, O(log² n) span [1]
- Degree Ordering: Order vertices by non-increasing degree
 - Lemma [2]: $\sum_{(u,v)\in E} \min(d(u),d(v)) \leq 2\alpha m$

- [1] Shi, Dhulipala, Shun (21)
- [2] Chiba, Nishizeki (85)

Parallel Five-Cycle Counting Algorithm (based on Kowalik)

Wedges

To avoid double counting, we find all cycles from the lowest ranked vertex in the cycle

Main Idea

- Parallel for each wedge (v, u, w): (unique via degree ordering)
 - Consider now the arboricity oriented graph
 - Parallel for each arboricity directed neighbor x of w, such that x is after v in degree ordering: (unique three-path)
 - # of wedges with endpoints v and x complete the cycle

Incorrect Counting

We must address incorrect counting when finding wedges with endpoints v and x:
 = wedges that do not complete five-cycles
 = wedges that do complete five-cycles

Data Structures for Wedges

- For each vertex v:
- Parallel hash table:

 U_v : keys = second endpoint 2 3 values = # of wedges with endpoint v

- For each pair of vertices (v, u):
- Parallel hash table:

Data Structures for Wedges

Vertex IDs in degree ordering

 U_0 : # of wedges with endpoints (0, key)

			•		
(1, 1)	(2, 2)	(3, 2)	(4, 1)	(5, 2)	
T _{0, 1}		٦	Γ _{0, 3}		
(2, 1)	(5, 1)		(2, 1)	(4, 1)	
T _{0, 2}	$T_{0, 2}$ $T_{0, 4}$				
(1, 1)	(3, 1)		(3, 1)	(5, 1)	

 $T_{0, u}$: # of wedges (0, u, key)

Wedge (v, u, w): (0, 1, 2)

Directed edge (w, x): (2, 3)

Number of (v, x) wedges : $U_0[3] = 2$

(v, w) is an edge: Subtract 1

 $T_{v. u}[x] = 0 : Subtract 0$

1 cycle

 U_0 : # of wedges with endpoints (0, key)

(1, 1)	(2, 2)	(3, 2)	(4, 1)	(5, 2)

 $T_{0,1}$: (0, 1, key)

(2, 1) (5, 1)

Vertex IDs in degree ordering, Arrows in arboricity orientation

Wedge (v, u, w): (0, 1, 5)

Directed edge (w, x): (5, 4)

Number of (v, x) wedges : $U_0[4] = 1$

(v, w) is not an edge: Subtract 0

 $T_{v, u}[x] = 0 : Subtract 0$

1 cycle

 U_0 : # of wedges with endpoints (0, key)

Vertex IDs in degree ordering, Arrows in arboricity orientation $T_{0,1}$: (0, 1, key)

(2,1) (5,1)

Wedge (v, u, w): (0, 2, 1) No directed edges (w, x)

0 cycles

Vertex IDs in degree ordering, Arrows in arboricity orientation

Wedge (v, u, w): (0, 4, 5)

Directed edge (w, x): (5, 1)

Number of (v, x) wedges : $U_0[1] = 1$

(v, w) is not an edge: Subtract 0

 $T_{v. u}[x] = 0 : Subtract 0$

1 cycle

 U_0 : # of wedges with endpoints (0, key)

 $T_{0,4}$: (0, 4, key)

(3, 1) (5, 1)

Vertex IDs in degree ordering, Arrows in arboricity orientation

Wedge (v, u, w): (1, 2, 3)

Directed edge (w, x): (3, 4)

Number of (v, x) wedges : $U_0[4] = 1$

(v, w) is not an edge: Subtract 0

 $T_{v. u}[x] = 0 : Subtract 0$

1 cycle

 U_1 : # of wedges with endpoints (1, key)

(3, 1)

(4, 1)

Vertex IDs in degree ordering, Arrows in arboricity orientation

In total: 4 cycles

 $T_{1,2}$: (1, 2, key)

(3, 1)

Theoretical Bounds

- Lemma [1]: Total # of wedges = $\sum_{(u,v)\in E} \min(d(u),d(v)) \le 2\alpha m$
- Arboricity orientation: O(m) work, O(log² n) span [2]
- Degree ordering: O(n) work, O(log n) span whp [3]
- Constructing hash tables U, T: O(mα) work, O(log* n) span whp
- Extending a wedge with a directed edge: Multiply by α for the work

Total = $O(m\alpha^2)$ work, $O(log^2 n)$ span whp

- [1] Chiba, Nishizeki (85)
- [2] Shi, Dhulipala, Shun (21)
- [3] Rajasekaran, Reif (89)

Parallel Five-Cycle Counting Algorithm (based on ESCAPE)

Arboricity Oriented Wedges

Main Idea

All possible acyclic orientations of directed five-cycles:

Inout-wedge (x to v)

Inout-wedge (v to x)

= directed three-path

Main Idea

- Parallel for every $(v \leftarrow u \leftarrow w \rightarrow x)$: (unique via arboricity ordering)
 - # of inout- and out-wedges with endpoints v and x complete the cycle
 - Incorrect counting (check if (w, v) or (x, u) are edges):

= wedges that do not complete five-cycles

= wedges that do complete five-cycles

X V X X X

Theoretical Bounds

- Arboricity orientation: O(m) work, O(log² n) span [1]
- Constructing hash table U: O(mα) work, O(log* n) span whp
- Iterating over 3-paths: $O(m\alpha^2)$ 3-paths

Total = $O(m\alpha^2)$ work, $O(log^2 n)$ span whp

Evaluation

Optimizations

Thread-local Data Structures:

 Space for parallel hash tables per vertex only allocated once per processor

Fast Reset:

Additional thread-local array to mark used hash table entries

Work Scheduling:

- Group vertices by estimating work, such that work per group is equal
- Estimate given by sum of degrees of neighbors
- Parallelize between groups

Environment

- c5.18xlarge AWS EC2 instance: dual-processor, 18 cores per processor (2way hyper-threading), 144 GiB main memory
- Cilk Plus^[1] work-stealing scheduler
- Real-world Stanford Network Analysis Platform (SNAP) graphs

Graph	# Vertices	# Edges	# 5-cycles
email	1005	32128	2.45 x 10 ⁸
dblp	425957	2.10×10^6	3.44×10^9
youtube	1.16 x 10 ⁶	5.98 x 10 ⁶	3.46×10^{10}
lj	4.03×10^6	6.94×10^7	6.67×10^{12}
orkut	3.27×10^6	2.34 x 10 ⁸	4.25×10^{13}
friendster	1.25 x 10 ⁸	3.61×10^9	9.63×10^{13}

[1] Leiserson (10)

Main Running Times

Main Running Times

- Up to 32.2x speedups over best sequential implementation
- Up to 818.12x speedups over ESCAPE package
- 8417.3 s on friendster graph

Binary Searches in Kowalik vs ESCAPE

Work Scheduling

Conclusion

Conclusion

- New parallel algorithms for five-cycle counting
- Strong theoretical bounds + fast performance

• Github:

https://github.com/ParAlg/gbbs/tree/master/benchmarks/Cycle Counting

Thank You

Scalability of Parallel Kowalik

Dashed line = With work scheduling Solid line = Without work scheduling