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Graph Clustering

Social Networks 
https://github.com/XinyueTan/Social-Network-Analysis-

Bioinformatics
DAWN: A framework to identify autism genes and subnetworks using gene 

expression and genetics (Liu et al., 14)

Facial Recognition
A community detection approach to cleaning extremely large face database 

(Jin et al., 18)



Parallelism

Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP 



Main goal: Scalable graph clustering framework with high-
quality on ground truth data

LambdaCC objective [1]: Generalized objective unifying quality 
measures (modularity, sparsest cut, cluster deletion)
For edge weights !"#, node weights $", and resolution % ∈
(0, 1), maximize:

,
",# ∈-×-

where 3 ,# are in
the same cluster

(!"# − %$"$#)

Correlation Clustering

[1] Veldt, Gleich, Wirth (18)



Highly optimized correlation clustering implementation, Par-CC

Tunable optimizations with comprehensive evaluation of 
performance and quality improvements
Up to 28.44x speedups over sequential baselines
High precision and recall compared to ground truth clusters, 
with trade-offs depending on the resolution parameter

Main Results



Improved performance and quality over state-of-the-art 
clustering implementations

Significantly better objective obtained compared to pivot-based 
correlation clustering (C4, ClusterWild) [1]

Up to 3.5x speedup over parallel modularity clustering 
(NetworKit) [2]

High precision and recall compared to ground truth, 
outperforming triangle-based clustering (TECTONIC) [3]

Main Results

[1] Pan, Papailiopoulos, Oymak, Recht, Ramchandran, Jordan (15)
[2] Staudt, Meyerhenke (16)
[3]Tsourakakis, Pachocki, Mitzenmacher (17)



Parallel Correlation Clustering 
Algorithm



NP-hard to optimize for the LambdaCC objective [1]

Louvain method: Well-studied heuristic

Louvain Method

Compress graph such that each cluster 

corresponds to a new vertex

Move each vertex to its best cluster 

(optimizing for LambdaCC)

Repeat until 

no moves 

are made

Repeat until no 

moves are made

[1] Dinh, Li, Thai (15)



Bottleneck: Sequential dependencies in moving vertices to best 
cluster

Solution: Relax sequential dependency and allow vertices to 
move concurrently

No convergence guarantee (use a constant cutoff)

Parallelizing Louvain Method

If b clusters with a, then c’s best move 
is not to cluster with a (and vice versa)
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Parallel Louvain Method: Best Move
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Best Move Change in CC 

Objective
Vertex a → Cluster c 4 − #
Vertex b → Cluster c 3 − #
Vertex c → Cluster b 4 − #
Vertex d → Cluster f 5 − #
Vertex e → Cluster d 3 − #
Vertex f → Cluster d 5 − #



Parallel Louvain Method: Best Move

Best Move Change in CC 
Objective

Vertex a → Cluster X 0
Vertex b → Cluster X 0
Vertex c → Cluster X 0
Vertex d → Cluster Y 0
Vertex e → Cluster Y 0
Vertex f → Cluster Y 0
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Parallel Louvain Method: Compress

vertex weight: 3

X Y1

vertex weight: 3
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Parallel Louvain Method: Best Move

Best Move Change in CC 
Objective

Vertex X → Cluster X 0
Vertex Y → Cluster Y 0

vertex weight: 3

X Y1

vertex weight: 3

No more best moves



Practical Optimizations



In performing best vertex moves,
Synchronous: Compute the desired cluster of each vertex in 
parallel, and then move all vertices to their chosen clusters in 
parallel

Optimization: Synchronous vs Asynchronous

Best Move
Vertex a → Cluster b 
Vertex b → Cluster a 
Vertex c → Cluster a
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LambdaCC Objective = -1



In performing best vertex moves, 
Asynchronous: Compute the desired cluster of each vertex and 
immediately move vertex to chosen cluster

Relaxes consistency guarantees

Optimization: Synchronous vs Asynchronous
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In performing best vertex moves, 
Asynchronous: Compute the desired cluster of each vertex and 
immediately move vertex to chosen cluster using atomics

Relaxes consistency guarantees

Optimization: Synchronous vs Asynchronous
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Vertex b → Cluster a 
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Up to 2.5x speedups using asynchronous over synchronous 
(1.21x median)
1.29 – 156.01% increase in objective using asynchronous over 
synchronous



Instead of considering all vertices in best moves,
Neighbors of vertices: Consider only vertices that are neighbors 
of previously moved vertices

Optimization: Subset of Vertices

c clusters with a, bc

db

a c

db

a

Consider only vertices b and d in the next round of best moves



Instead of considering all vertices in best moves,
Neighbors of clusters: Consider only vertices that are neighbors 
of any vertex in clusters that previously had vertices move out of 
them

Optimization: Subset of Vertices

c clusters with a, bc

db

a c

db

a

Consider only vertices a, b, and d in the next round of best moves

Up to 1.98x speedups using neighbors of vertices over all 
vertices (1.03x median)



Multi-level refinement: After the algorithm is finished and the 
last compressed graph is computed, traverse back through 
previous compressed graphs in order + repeat the best moves 
subroutine

Particularly helpful if best moves does not converge when graph 
compression occurs

Optimization: Multi-level Refinement



Multi-level refinement: After the algorithm is finished and the 
last compressed graph is computed, traverse back through 
previous compressed graphs in order + repeat the best moves 
subroutine

Particularly helpful if best moves does not converge when graph 
compression occurs

Optimization: Multi-level Refinement

Up to 2.29x slowdowns using multi-level refinement (1.67x
median)
1.12 – 36.92% increase in objective using multi-level 
refinement



Asynchronous
Neighbors of vertices
Multi-level refinement

Best Optimizations

Up to 5.85x speedups using these optimizations
Up to a 156% increase in objective using these optimizations



Experiments



30-core GCP instance (2-way hyper-threading), 240 GiB main memory
48-core GCP instance (2-way hyper-threading), 1434 GiB main memory 
for large graphs

Graphs with ground-truth communities:
Unweighted real-world Stanford Network Analysis Platform (SNAP) 
graphs with up to 1.8 billion edges
Weighted graphs from computing k-NN on real-world pointsets from the 
UCI Machine Learning repository

Environment



Speedups over Sequential Baselines



Pivot-based correlation clustering:
C4, ClusterWild! [1] are up to 429x faster than Par-CC
C4, ClusterWild! give a 273 – 433% decrease in objective compared to 
Par-CC

Parallel modularity clustering:
Par-Mod is up to 3.5x faster than NetworKit [2]

Triangle-based clustering:
Par-CC is up to 67.62x faster than TECTONIC [3]

Comparison to Existing Baselines

[1] Pan, Papailiopoulos, Oymak, Recht, Ramchandran, Jordan (15)
[2] Staudt, Meyerhenke (16)
[3]Tsourakakis, Pachocki, Mitzenmacher (17)



Comparison to Ground Truth



Conclusion



Scalable graph clustering framework Par-CC with high-quality on 
ground truth data
Improved performance and quality over state-of-the-art 
clustering implementations

Code: https://github.com/jeshi96/parallel-correlation-clustering

Conclusion

https://github.com/jeshi96/parallel-correlation-clustering

