
Parallel clique counting and
peeling algorithms

Jessica Shi (MIT CSAIL)
Laxman Dhulipala (MIT CSAIL)

Julian Shun (MIT CSAIL)

Graph processing

Social Network
https://blog.soton.ac.uk/skillted/2015/04/05/graph-theory-for-skillted/

Financial Transactions
https://www.rtinsights.com/how-the-worlds-largest-banks-use-advanced-

graph-analytics-to-fight-fraud/

Road Network
Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a Major
Power Outage in the Netherlands

Parallelism

Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Finding dense subgraphs

Problem: Given a graph G, find the k-clique densest subgraph [1]

Subgraph that maximizes (# induced k-cliques) / (# vertices)

Applications:

Community detection in social networks [2]

Link-spam detection in web graphs [3]

Motif detection in biological networks [4]

[1] Tsourakakis (15)
[2] Angel, Sarkas, Koudas, Srivastava (12)
[3] Gibson, Kumar, Tomkins (05)
[4] Bader, Hogue (03)

Main goal: Develop efficient exact and approximate algorithms
for k-clique counting and peeling

New parallel algorithms for k-clique counting
Comprehensive evaluation

Outperforms fastest parallel algorithms [1, 2] by up to 10x
Up to 39x self-relative speedups
Compute 4-clique counts on largest publicly-available graph with > 200
billion edges

Main results

[1] Danisch, Balalau, Sozio (18)
[2] Jain, Seshadhri (20)

Main goal: Develop efficient exact and approximate algorithms
for k-clique counting and peeling

New parallel algorithms for k-clique peeling
Comprehensive evaluation

Outperforms fastest sequential algorithms [1] by up to 12x
Up to 14x self-relative speedups

Main results

[1] Danisch, Balalau, Sozio (18)

Strong theoretical bounds
Work = total # operations = # vertices
in graph
Span = longest dependency path =
longest directed path
Running time ≤ (work / #
processors) + O(span)
Work-efficient = work matches
sequential time complexity

Important paradigms

Parallel computation graph

https://www.researchgate.net/figure/Task-dependency-graph-
each-node-contains-the-task-time-and-the-highlighted-tasks-
form_fig1_320678407

Obtain a total ordering of vertices
Non-increasing degree order [1]

Ordering given by k-core algorithm [2]

Orient edges from vertices lower in the ordering to vertices
higher in the ordering
Count unique k-cliques starting from lowest vertex in ordering

k-clique counting components

[1] Chiba, Nishizeki (85)
[2] Danisch, Balalau, Sozio (18)

ba c d

c-orientation: Direct graph such that each vertex’s out-degree is
upper bounded by c
Arboricity orientation: O(⍺)-orientation
⍺ = arboricity/degeneracy (O(√#))
m = # edges

Our work: Two arboricity orientation algorithms in O(m) work,
O(log2 n) span

Graph orientation

Parallel k-clique counting
algorithm

A clique is found by repeatedly intersecting the neighborhoods
of vertices

How do we find cliques?

N(a) = {b, c, d, e}
N(b) = {a, c, d}
Intersection = {c, d}

Two 3-cliques incident to {a, b}

b

a

c

d

e

= initial vertices in 2-clique

Recursive subroutine:
S = set of vertices to consider in clique (initially V)
If it is the (k - 1)th recursive level, return |S| (number of k-cliques)

Parallel for each v in S: (v is added to the clique)

• S’ = intersection of S with arboricity-directed neighbors of v
• Recurse on S’

Main idea

b

a

c

d

e

= clique
v = b
S = {c, d, e}
S’ = {c, d}

Consider only vertices in the intersection of the neighborhood of the clique

Counting 4-cliques

Level 1 Level 2

a

b c

d

e a

b c

d

Clique = {a, b}
S’ = {c, d}

v = a
S = {b, c, d, e}

= clique

a

b c

d

+ 1 four-clique

Level 3

Clique = {a, b, c}
S’ = {d}

Consider only vertices in the intersection of the neighborhood of the clique

Counting 4-cliques

Level 1 Level 2

a

b c

d

e
a

c

d

v = a
S = {b, c, d, e}

= clique

Clique = {a, c}
S’ = {d}

Level 3

Clique = {a, c, d}
S’ = {}

a

c

d

+ 0 four-clique

Counting 4-cliques

1 four-clique on vertex a

At each level, only store S = the set of vertices in the intersection
of the neighborhood of the clique

a

b c

d

e

Recall S = Set of neighbors of clique under construction
Arboricity orientation: O(m) work, O(log2 n) span
Iterating through each v in S: O(m) work over the first two recursive
levels, multiply by ⍺ for subsequent recursive levels
Intersecting S with arboricity-directed neighbors of v: O(⍺) work, O(log n)
span whp

Arboricity orientation: O(m) space
Storing S per recursive level: O(P⍺) space where P = # processors

Theoretical bounds

Total = O(m⍺k-2) work, O(k log n + log2 n) span whp

Total = O(m + P⍺) space

Parallel k-clique peeling algorithm

k-clique densest subgraph: Subgraph that maximizes (# induced
k-cliques) / (# vertices)

k-clique peeling: Gives a 1/k approximation to the k-clique
densest subgraph problem[1]

k-clique densest subgraph problem

[1] Tsourakakis (15)

0

2

2
2

1

1

2 four-cliques /
5 vertices

Goal: Iteratively remove all vertices with min k-clique count

How do we peel k-cliques?

Subgoal 1: A way to keep track of vertices with min k-clique count
Subgoal 2: A way to update k-clique counts after peeling vertices

For subgoal 2: Reuse counting algorithm

For subgoal 1: Use a work-efficient batch-parallel Fibonacci heap which supports
batch insertions/decrease-keys (Shi and Shun, 2020)

Let B be our Fibonacci heap mapping vertices to # of k-cliques
While not all vertices have been peeled:

Peel subset A of vertices with min k-clique count (using B)
Call recursive subroutine for each vertex v in A, with S =
undirected neighbors of v
Update k-clique counts of incident vertices that have not been
peeled

Main Idea

4-clique peeling example

f

a

b
c

e

d

0 1 2
f d e a b c

Fibonacci Heap B:
4-clique count:

Vertices:

= vertices to peel in this round

Sf = {c, d}
No 4-cliques on f

4-clique density: 0.25

4-clique peeling example

a

b
c

e

d

1 2
d e a b c

Fibonacci Heap B:
4-clique count:

Vertices:

= vertices to peel in this round

Sd = {a, b, c}
One 4-clique on d

Se = {a, b, c}
One 4-clique on e

4-clique density: 0.4

4-clique peeling example

a

b
c

0
a b c

Fibonacci Heap B:
4-clique count:

Vertices:

= vertices to peel in this round

No 4-cliques remaining

4-clique density: 0

Theoretical bounds

Because S = undirected neighbors of v, we no longer have O(⍺)

Nash-Williams Theorem: For every subgraph G’,

⍺ ≥ #$(&')
() &' *+)

The first level of recursion on S = N(v) is equivalent to
Constructing the induced subgraph of N(v) on G
Performing (k - 1)-clique counting

ρk: Number of peeling rounds necessary to completely peel G

P-completeness result: k-clique peeling solves a P-complete problem

Theoretical bounds

Total = O(m⍺k-2 + ρk log n) amortized expected work,
O(ρk k log n + log2 n) span whp

We provide details in the paper

Evaluation

30-core GCP instance (2-way hyper-threading), 240 GiB main memory
Real-world Stanford Network Analysis Platform (SNAP) graphs
Use bucketing implementation from Julienne [1] instead of Fibonacci heap

Environment

Graph # Vertices # Edges
dblp 425957 2.10 x 106

skitter 1.70 x 106 1.11 x 107

lj 4.03 x 106 6.94 x 107

orkut 3.27 x 106 2.34 x 108

friendster 1.25 x 108 3.61 x 109

[1] Dhulipala, Blelloch, and Shun (17)

Comparison to other implementations (counting)

KClist: Danisch, Balalau, Sozio (18)

Pivoter: Jain, Seshadhri (20)

WCO: Mhedhbi, Salihoglu (19)

BinaryJoin: Lai et al. (19)

Up to 9.88x speedups over parallel KClist

Up to 79.20x speedups over serial KClist

Up to 196.28x speedups over parallel Pivoter
Pivoter is faster: k ≥ 8 on skitter, dblp, k ≥ 10 on orkut

Evaluation (counting)

First to obtain 4-clique counts on:
ClueWeb (74 billion edges) in < 2 hours
Hyperlink2014 (~100 billion edges) in < 4 hours
Hyperlink2012 (~200 billion edges) in < 45 hours

Slowdown of serial KClist (peeling)

Slowdown of serial KClist (peeling)

Up to 11.83x speedups over best sequential peeling
implementation

Approximate peeling: Up to 51.69x speedups over our parallel
exact peeling implementation

Conclusion

First work-efficient parallel algorithms for k-clique counting in
polylogarithmic depth
First work-efficient parallel algorithms for k-clique peeling
k-clique counting scales to largest publicly available graphs
Additional approximate k-clique counting and peeling results in
paper

Github:
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CliqueCo
unting

Conclusion

https://github.com/ParAlg/gbbs/tree/master/benchmarks/CliqueCounting

Thank you

