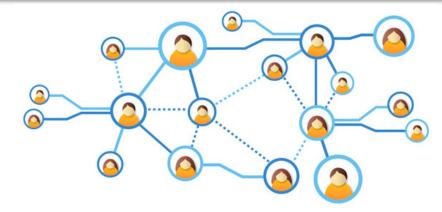
Parallel clique counting and peeling algorithms

Jessica Shi (MIT CSAIL)

Laxman Dhulipala (MIT CSAIL)

Julian Shun (MIT CSAIL)

Graph processing

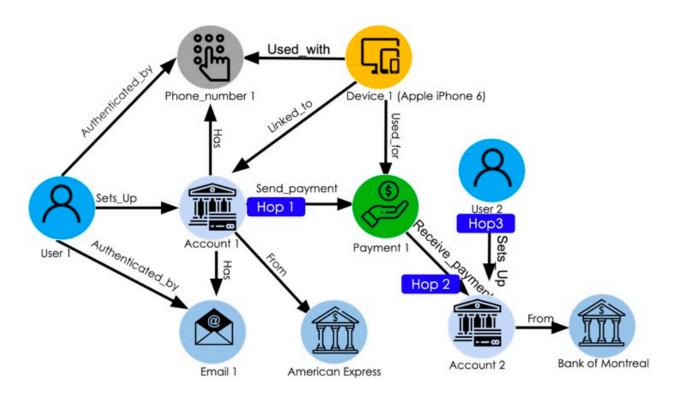


Social Network

https://blog.soton.ac.uk/skillted/2015/04/05/graph-theory-for-skillted/

Road Network

Data-driven Modeling of Transportation Systems and Traffic Data Analysis During a Major Power Outage in the Netherlands



Financial Transactions

https://www.rtinsights.com/how-the-worlds-largest-banks-use-advanced-graph-analytics-to-fight-fraud/

Parallelism

Parallelism enables us to efficiently process large graphs

Apple, Microsoft, Intel, https://www.flickr.com/photos/66016217@N00/2556707493/, HP

Finding dense subgraphs

- Problem: Given a graph G, find the k-clique densest subgraph [1]
 - Subgraph that maximizes (# induced k-cliques) / (# vertices)
- Applications:
 - Community detection in social networks [2]
 - Link-spam detection in web graphs [3]
 - Motif detection in biological networks [4]

- [1] Tsourakakis (15)
- [2] Angel, Sarkas, Koudas, Srivastava (12)
- [3] Gibson, Kumar, Tomkins (05)
- [4] Bader, Hogue (03)

Main results

 Main goal: Develop efficient exact and approximate algorithms for k-clique counting and peeling

- New parallel algorithms for k-clique counting
- Comprehensive evaluation
 - Outperforms fastest parallel algorithms [1, 2] by up to 10x
 - Up to 39x self-relative speedups
 - Compute 4-clique counts on largest publicly-available graph with > 200 billion edges
 - [1] Danisch, Balalau, Sozio (18)
 - [2] Jain, Seshadhri (20)

Main results

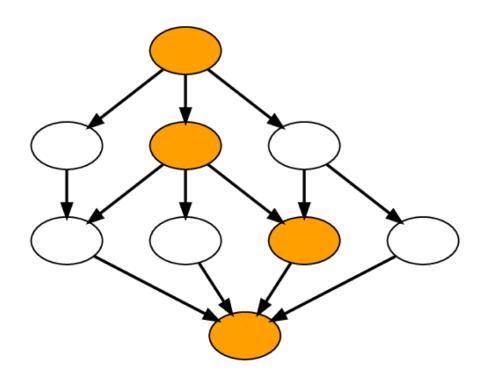
 Main goal: Develop efficient exact and approximate algorithms for k-clique counting and peeling

- New parallel algorithms for k-clique peeling
- Comprehensive evaluation
 - Outperforms fastest sequential algorithms [1] by up to 12x
 - Up to 14x self-relative speedups

Important paradigms

- Strong theoretical bounds
 - Work = total # operations = # vertices in graph
 - Span = longest dependency path = longest directed path
 - Running time ≤ (work / # processors) + O(span)
 - Work-efficient = work matches sequential time complexity

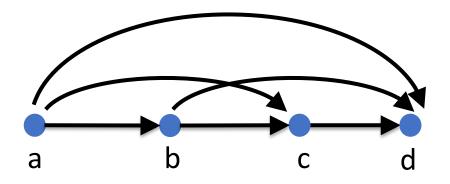
Parallel computation graph



https://www.researchgate.net/figure/Task-dependency-graph-each-node-contains-the-task-time-and-the-highlighted-tasks-form_fig1_320678407

k-clique counting components

- Obtain a total ordering of vertices
 - Non-increasing degree order [1]
 - Ordering given by k-core algorithm [2]
- Orient edges from vertices lower in the ordering to vertices higher in the ordering
- Count unique k-cliques starting from lowest vertex in ordering



^[1] Chiba, Nishizeki (85)

^[2] Danisch, Balalau, Sozio (18)

Graph orientation

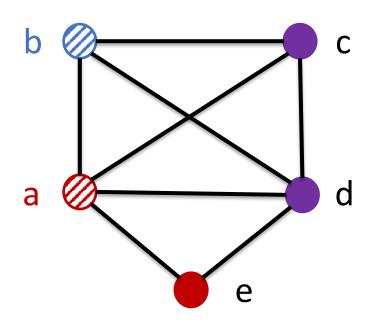
- c-orientation: Direct graph such that each vertex's out-degree is upper bounded by c
- Arboricity orientation: $O(\alpha)$ -orientation
 - α = arboricity/degeneracy (O(\sqrt{m}))
 - m = # edges

Our work: Two arboricity orientation algorithms in O(m) work,
 O(log² n) span

Parallel k-clique counting algorithm

How do we find cliques?

 A clique is found by repeatedly intersecting the neighborhoods of vertices

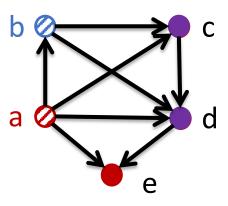


```
= initial vertices in 2-clique
```

Two 3-cliques incident to {a, b}

Main idea

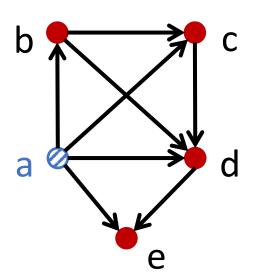
- Recursive subroutine:
 - S = set of vertices to consider in clique (initially V)
 - If it is the (k 1)th recursive level, return |S| (number of k-cliques)
 - Parallel for each v in S: (v is added to the clique)
 - S' = intersection of S with arboricity-directed neighbors of v
 - Recurse on S'



Counting 4-cliques

Consider only vertices in the intersection of the neighborhood of the clique

Level 1



v = a S = {b, c, d, e} ⊘ = clique Level 2

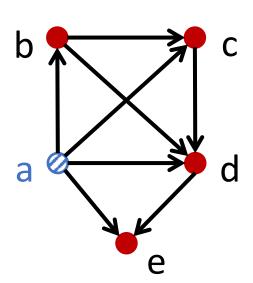
Level 3

+ 1 four-clique

Counting 4-cliques

Consider only vertices in the intersection of the neighborhood of the clique

Level 1



Level 2

Clique =
$$\{a, c\}$$

S' = $\{d\}$

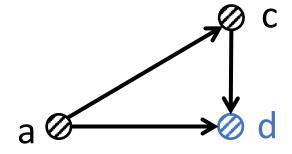
c

d

Level 3

Clique =
$$\{a, c, d\}$$

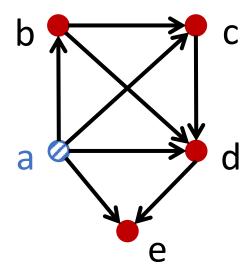
S' = $\{\}$



+ 0 four-clique

Counting 4-cliques

1 four-clique on vertex a



 At each level, only store S = the set of vertices in the intersection of the neighborhood of the clique

Theoretical bounds

Recall S = Set of neighbors of clique under construction

- Arboricity orientation: O(m) work, O(log² n) span
- Iterating through each v in S: O(m) work over the first two recursive levels, multiply by α for subsequent recursive levels
- Intersecting S with arboricity-directed neighbors of v: $O(\alpha)$ work, $O(\log n)$ span whp

Total =
$$O(m\alpha^{k-2})$$
 work, $O(k \log n + \log^2 n)$ span whp

- Arboricity orientation: O(m) space
- Storing S per recursive level: $O(P\alpha)$ space where P = # processors

Total =
$$O(m + P\alpha)$$
 space

Parallel k-clique peeling algorithm

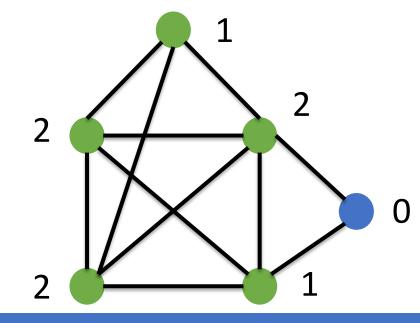
k-clique densest subgraph problem

 k-clique densest subgraph: Subgraph that maximizes (# induced k-cliques) / (# vertices)

k-clique peeling: Gives a 1/k approximation to the k-clique

densest subgraph problem^[1]

2 four-cliques /5 vertices



How do we peel k-cliques?

Goal: Iteratively remove all vertices with min k-clique count

Subgoal 1: A way to keep track of vertices with min k-clique count

Subgoal 2: A way to update k-clique counts after peeling vertices

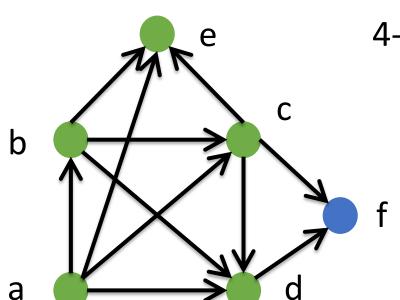
For subgoal 1: Use a work-efficient batch-parallel Fibonacci heap which supports batch insertions/decrease-keys (Shi and Shun, 2020)

For subgoal 2: Reuse counting algorithm

Main Idea

- Let B be our Fibonacci heap mapping vertices to # of k-cliques
- While not all vertices have been peeled:
 - Peel subset A of vertices with min k-clique count (using B)
 - Call recursive subroutine for each vertex v in A, with S = undirected neighbors of v
 - Update k-clique counts of incident vertices that have not been peeled

4-clique peeling example



Fibonacci Heap B:

4-clique count:

0 1 2

Vertices:

f d e a b c

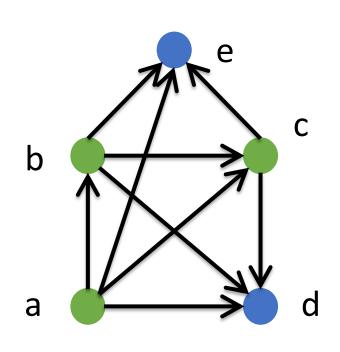
 $S_f = \{c, d\}$

No 4-cliques on f

= vertices to peel in this round

4-clique density: 0.25

4-clique peeling example



Fibonacci Heap B:

4-clique count:

2

Vertices:

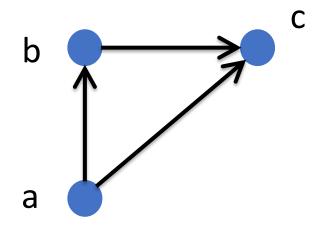
d e a b

 $S_d = \{a, b, c\}$ One 4-clique on d

 $S_e = \{a, b, c\}$ One 4-clique on e

= vertices to peel in this round4-clique density: 0.4

4-clique peeling example



Fibonacci Heap B:

4-clique count:

0

Vertices:

a

b

No 4-cliques remaining

= vertices to peel in this round 4-clique density: 0

Theoretical bounds

• Because S =undirected neighbors of v, we no longer have $O(\alpha)$

Nash-Williams Theorem: For every subgraph G',

$$\alpha \ge \frac{E(G')}{(V(G')-1)}$$

- The first level of recursion on S = N(v) is equivalent to
 - Constructing the induced subgraph of N(v) on G
 - Performing (k 1)-clique counting

Theoretical bounds

• ρ_k : Number of peeling rounds necessary to completely peel G

P-completeness result: k-clique peeling solves a P-complete problem

Total =
$$O(m\alpha^{k-2} + \rho_k \log n)$$
 amortized expected work,
 $O(\rho_k k \log n + \log^2 n)$ span whp

We provide details in the paper

Evaluation

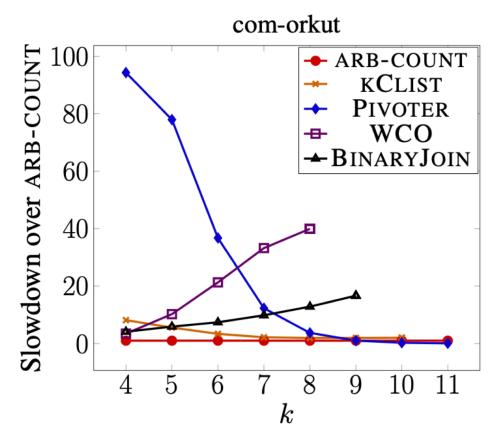
Environment

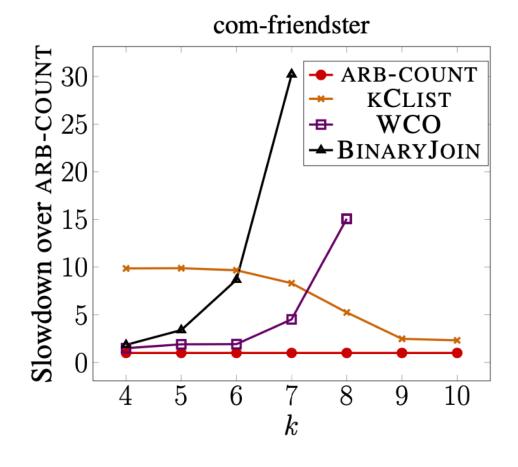
- 30-core GCP instance (2-way hyper-threading), 240 GiB main memory
- Real-world Stanford Network Analysis Platform (SNAP) graphs
- Use bucketing implementation from Julienne [1] instead of Fibonacci heap

Graph	# Vertices	# Edges
dblp	425957	2.10×10^6
skitter	1.70 x 10 ⁶	1.11×10^7
lj	4.03 x 10 ⁶	6.94×10^7
orkut	3.27×10^6	2.34×10^8
friendster	1.25 x 10 ⁸	3.61×10^9

[1] Dhulipala, Blelloch, and Shun (17)

Comparison to other implementations (counting)





KClist: Danisch, Balalau, Sozio (18)

Pivoter: Jain, Seshadhri (20) WCO: Mhedhbi, Salihoglu (19)

BinaryJoin: Lai et al. (19)

Evaluation (counting)

- Up to 9.88x speedups over parallel KClist
- Up to 79.20x speedups over serial KClist
- Up to 196.28x speedups over parallel Pivoter
 - Pivoter is faster: $k \ge 8$ on skitter, dblp, $k \ge 10$ on orkut

```
First to obtain 4-clique counts on:

ClueWeb (74 billion edges) in < 2 hours

Hyperlink2014 (~100 billion edges) in < 4 hours

Hyperlink2012 (~200 billion edges) in < 45 hours
```

Slowdown of serial KClist (peeling)



Slowdown of serial KClist (peeling)

B 12

Up to 11.83x speedups over best sequential peeling implementation

 Approximate peeling: Up to 51.69x speedups over our parallel exact peeling implementation

```
as-skitter com-dblp com-orkut com-friendster com-lj
max: 1.51 max: 11.83 max: 3.01 max: 5.99 max: 2.58
```

Conclusion

Conclusion

- First work-efficient parallel algorithms for k-clique counting in polylogarithmic depth
- First work-efficient parallel algorithms for k-clique peeling
- k-clique counting scales to largest publicly available graphs
- Additional approximate k-clique counting and peeling results in paper

 Github: <u>https://github.com/ParAlg/gbbs/tree/master/benchmarks/CliqueCounting</u>

Thank you